Optimal. Leaf size=15 \[ x \log \left (\frac {5 e^{-x}}{2 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2548} \begin {gather*} x \log \left (\frac {5 e^{-x}}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2548
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x-\frac {x^2}{2}+\int \log \left (\frac {5 e^{-x}}{2 x}\right ) \, dx\\ &=-x-\frac {x^2}{2}+x \log \left (\frac {5 e^{-x}}{2 x}\right )-\int (-1-x) \, dx\\ &=x \log \left (\frac {5 e^{-x}}{2 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} x \log \left (\frac {5 e^{-x}}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 12, normalized size = 0.80 \begin {gather*} x \log \left (\frac {5 \, e^{\left (-x\right )}}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 1.33 \begin {gather*} -x^{2} + x \log \relax (5) - x \log \relax (2) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 13, normalized size = 0.87
method | result | size |
default | \(x \ln \left (\frac {5 \,{\mathrm e}^{-x}}{2 x}\right )\) | \(13\) |
norman | \(x \ln \left (\frac {5 \,{\mathrm e}^{-x}}{2 x}\right )\) | \(13\) |
risch | \(-x \ln \left ({\mathrm e}^{x}\right )-x \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right ) x}{2}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right )^{2} x}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right )^{2} x}{2}-\frac {i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x}\right )^{3} x}{2}-x \ln \relax (2)+x \ln \relax (5)\) | \(122\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 12, normalized size = 0.80 \begin {gather*} x \log \left (\frac {5 \, e^{\left (-x\right )}}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.10, size = 13, normalized size = 0.87 \begin {gather*} -x\,\left (x-\ln \left (\frac {5}{2\,x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 10, normalized size = 0.67 \begin {gather*} x \log {\left (\frac {5 e^{- x}}{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________