Optimal. Leaf size=25 \[ 2+\log (2)+\frac {256}{\log \left (\frac {1}{2} \left (5 x+\frac {x}{x+\log (x)}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {256-1280 x^2+(-256-2560 x) \log (x)-1280 \log ^2(x)}{\left (x^2+5 x^3+\left (x+10 x^2\right ) \log (x)+5 x \log ^2(x)\right ) \log ^2\left (\frac {x+5 x^2+5 x \log (x)}{2 x+2 \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {256 \left (1-5 x^2-\log (x)-10 x \log (x)-5 \log ^2(x)\right )}{\left (x^2+5 x^3+\left (x+10 x^2\right ) \log (x)+5 x \log ^2(x)\right ) \log ^2\left (\frac {x+5 x^2+5 x \log (x)}{2 (x+\log (x))}\right )} \, dx\\ &=256 \int \frac {1-5 x^2-\log (x)-10 x \log (x)-5 \log ^2(x)}{\left (x^2+5 x^3+\left (x+10 x^2\right ) \log (x)+5 x \log ^2(x)\right ) \log ^2\left (\frac {x+5 x^2+5 x \log (x)}{2 (x+\log (x))}\right )} \, dx\\ &=256 \int \left (\frac {1}{x \left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )}-\frac {5 x}{\left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )}-\frac {10 \log (x)}{\left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )}-\frac {\log (x)}{x \left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )}-\frac {5 \log ^2(x)}{x \left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )}\right ) \, dx\\ &=256 \int \frac {1}{x \left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )} \, dx-256 \int \frac {\log (x)}{x \left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )} \, dx-1280 \int \frac {x}{\left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )} \, dx-1280 \int \frac {\log ^2(x)}{x \left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )} \, dx-2560 \int \frac {\log (x)}{\left (x+5 x^2+\log (x)+10 x \log (x)+5 \log ^2(x)\right ) \log ^2\left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 25, normalized size = 1.00 \begin {gather*} \frac {256}{\log \left (\frac {x (1+5 x+5 \log (x))}{2 (x+\log (x))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 25, normalized size = 1.00 \begin {gather*} \frac {256}{\log \left (\frac {5 \, x^{2} + 5 \, x \log \relax (x) + x}{2 \, {\left (x + \log \relax (x)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 28, normalized size = 1.12 \begin {gather*} \frac {256}{\log \left (5 \, x + 5 \, \log \relax (x) + 1\right ) - \log \left (2 \, x + 2 \, \log \relax (x)\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 273, normalized size = 10.92
method | result | size |
risch | \(\frac {512 i}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (x +\ln \relax (x )+\frac {1}{5}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x +\ln \relax (x )+\frac {1}{5}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x \left (x +\ln \relax (x )+\frac {1}{5}\right )}{x +\ln \relax (x )}\right )^{3}-2 i \ln \relax (2)+2 i \ln \relax (5)+2 i \ln \left (x +\ln \relax (x )+\frac {1}{5}\right )+2 i \ln \relax (x )-2 i \ln \left (x +\ln \relax (x )\right )}\) | \(273\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 28, normalized size = 1.12 \begin {gather*} -\frac {256}{\log \relax (2) - \log \left (5 \, x + 5 \, \log \relax (x) + 1\right ) + \log \left (x + \log \relax (x)\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.16, size = 28, normalized size = 1.12 \begin {gather*} \frac {256}{\ln \left (\frac {x+5\,x\,\ln \relax (x)+5\,x^2}{2\,x+2\,\ln \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 24, normalized size = 0.96 \begin {gather*} \frac {256}{\log {\left (\frac {5 x^{2} + 5 x \log {\relax (x )} + x}{2 x + 2 \log {\relax (x )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________