Optimal. Leaf size=19 \[ 5 e^{-3 x} \left (1-x^2+\log (4 \log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.71, antiderivative size = 30, normalized size of antiderivative = 1.58, number of steps used = 12, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {6742, 2194, 2176, 2555, 12} \begin {gather*} -5 e^{-3 x} x^2+5 e^{-3 x}+5 e^{-3 x} \log (4 \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2555
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 e^{-3 x} \left (1-3 x \log (x)-2 x^2 \log (x)+3 x^3 \log (x)\right )}{x \log (x)}-15 e^{-3 x} \log (4 \log (x))\right ) \, dx\\ &=5 \int \frac {e^{-3 x} \left (1-3 x \log (x)-2 x^2 \log (x)+3 x^3 \log (x)\right )}{x \log (x)} \, dx-15 \int e^{-3 x} \log (4 \log (x)) \, dx\\ &=5 e^{-3 x} \log (4 \log (x))+5 \int \left (-3 e^{-3 x}-2 e^{-3 x} x+3 e^{-3 x} x^2+\frac {e^{-3 x}}{x \log (x)}\right ) \, dx+15 \int -\frac {e^{-3 x}}{3 x \log (x)} \, dx\\ &=5 e^{-3 x} \log (4 \log (x))-10 \int e^{-3 x} x \, dx-15 \int e^{-3 x} \, dx+15 \int e^{-3 x} x^2 \, dx\\ &=5 e^{-3 x}+\frac {10}{3} e^{-3 x} x-5 e^{-3 x} x^2+5 e^{-3 x} \log (4 \log (x))-\frac {10}{3} \int e^{-3 x} \, dx+10 \int e^{-3 x} x \, dx\\ &=\frac {55 e^{-3 x}}{9}-5 e^{-3 x} x^2+5 e^{-3 x} \log (4 \log (x))+\frac {10}{3} \int e^{-3 x} \, dx\\ &=5 e^{-3 x}-5 e^{-3 x} x^2+5 e^{-3 x} \log (4 \log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 20, normalized size = 1.05 \begin {gather*} e^{-3 x} \left (5-5 x^2+5 \log (4 \log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 23, normalized size = 1.21 \begin {gather*} -5 \, {\left (x^{2} - 1\right )} e^{\left (-3 \, x\right )} + 5 \, e^{\left (-3 \, x\right )} \log \left (4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 27, normalized size = 1.42 \begin {gather*} -5 \, x^{2} e^{\left (-3 \, x\right )} + 5 \, e^{\left (-3 \, x\right )} \log \left (4 \, \log \relax (x)\right ) + 5 \, e^{\left (-3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 24, normalized size = 1.26
method | result | size |
risch | \(5 \,{\mathrm e}^{-3 x} \ln \left (4 \ln \relax (x )\right )-5 \left (x^{2}-1\right ) {\mathrm e}^{-3 x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 48, normalized size = 2.53 \begin {gather*} -\frac {5}{9} \, {\left (9 \, x^{2} + 6 \, x + 2\right )} e^{\left (-3 \, x\right )} + \frac {10}{9} \, {\left (3 \, x + 1\right )} e^{\left (-3 \, x\right )} + 5 \, {\left (2 \, \log \relax (2) + \log \left (\log \relax (x)\right )\right )} e^{\left (-3 \, x\right )} + 5 \, e^{\left (-3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 18, normalized size = 0.95 \begin {gather*} 5\,{\mathrm {e}}^{-3\,x}\,\left (\ln \left (4\,\ln \relax (x)\right )-x^2+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 9.23, size = 19, normalized size = 1.00 \begin {gather*} \left (- 5 x^{2} + 5 \log {\left (4 \log {\relax (x )} \right )} + 5\right ) e^{- 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________