Optimal. Leaf size=34 \[ \frac {12}{x \left (\frac {2}{x}+\frac {1}{5} \left (-4-x-\frac {1}{2} \left (7+e^3\right ) x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.68 \begin {gather*} -\frac {120}{-20+8 x+2 x^2+\left (7+e^3\right ) x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 25, normalized size = 0.74 \begin {gather*} -\frac {120}{x^{3} e^{3} + 7 \, x^{3} + 2 \, x^{2} + 8 \, x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {120 \, {\left (3 \, x^{2} e^{3} + 21 \, x^{2} + 4 \, x + 8\right )}}{x^{6} e^{6} + 49 \, x^{6} + 28 \, x^{5} + 116 \, x^{4} - 248 \, x^{3} - 16 \, x^{2} + 2 \, {\left (7 \, x^{6} + 2 \, x^{5} + 8 \, x^{4} - 20 \, x^{3}\right )} e^{3} - 320 \, x + 400}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 26, normalized size = 0.76
method | result | size |
gosper | \(-\frac {120}{x^{3} {\mathrm e}^{3}+7 x^{3}+2 x^{2}+8 x -20}\) | \(26\) |
norman | \(-\frac {120}{x^{3} {\mathrm e}^{3}+7 x^{3}+2 x^{2}+8 x -20}\) | \(26\) |
risch | \(-\frac {120}{x^{3} {\mathrm e}^{3}+7 x^{3}+2 x^{2}+8 x -20}\) | \(26\) |
default | \(60 \left (\munderset {\textit {\_R} =\RootOf \left (400+\left ({\mathrm e}^{6}+14 \,{\mathrm e}^{3}+49\right ) \textit {\_Z}^{6}+\left (4 \,{\mathrm e}^{3}+28\right ) \textit {\_Z}^{5}+\left (16 \,{\mathrm e}^{3}+116\right ) \textit {\_Z}^{4}+\left (-40 \,{\mathrm e}^{3}-248\right ) \textit {\_Z}^{3}-16 \textit {\_Z}^{2}-320 \textit {\_Z} \right )}{\sum }\frac {\left (8+3 \left (7+{\mathrm e}^{3}\right ) \textit {\_R}^{2}+4 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{-160+3 \textit {\_R}^{5} {\mathrm e}^{6}+42 \textit {\_R}^{5} {\mathrm e}^{3}+10 \textit {\_R}^{4} {\mathrm e}^{3}+147 \textit {\_R}^{5}+32 \textit {\_R}^{3} {\mathrm e}^{3}+70 \textit {\_R}^{4}-60 \textit {\_R}^{2} {\mathrm e}^{3}+232 \textit {\_R}^{3}-372 \textit {\_R}^{2}-16 \textit {\_R}}\right )\) | \(142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 22, normalized size = 0.65 \begin {gather*} -\frac {120}{x^{3} {\left (e^{3} + 7\right )} + 2 \, x^{2} + 8 \, x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 22, normalized size = 0.65 \begin {gather*} -\frac {120}{\left ({\mathrm {e}}^3+7\right )\,x^3+2\,x^2+8\,x-20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.80, size = 20, normalized size = 0.59 \begin {gather*} - \frac {120}{x^{3} \left (7 + e^{3}\right ) + 2 x^{2} + 8 x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________