Optimal. Leaf size=26 \[ \frac {x}{16 \left (\frac {25 e^{5/2} (1-x)}{x}-x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 37, normalized size of antiderivative = 1.42, number of steps used = 5, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 1593, 1680, 776} \begin {gather*} \frac {25 e^{5/2} (1-x)}{16 \left (-x^2-25 e^{5/2} x+25 e^{5/2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 776
Rule 1593
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{5/2} \int \frac {50 x-25 x^2}{16 x^4+e^5 \left (10000-20000 x+10000 x^2\right )+e^{5/2} \left (-800 x^2+800 x^3\right )} \, dx\\ &=e^{5/2} \int \frac {(50-25 x) x}{16 x^4+e^5 \left (10000-20000 x+10000 x^2\right )+e^{5/2} \left (-800 x^2+800 x^3\right )} \, dx\\ &=e^{5/2} \operatorname {Subst}\left (\int \frac {25 \left (25 e^{5/2}-2 x\right ) \left (-4-25 e^{5/2}+2 x\right )}{4 \left (100 e^{5/2}+625 e^5-4 x^2\right )^2} \, dx,x,\frac {25 e^{5/2}}{2}+x\right )\\ &=\frac {1}{4} \left (25 e^{5/2}\right ) \operatorname {Subst}\left (\int \frac {\left (25 e^{5/2}-2 x\right ) \left (-4-25 e^{5/2}+2 x\right )}{\left (100 e^{5/2}+625 e^5-4 x^2\right )^2} \, dx,x,\frac {25 e^{5/2}}{2}+x\right )\\ &=\frac {25 e^{5/2} (1-x)}{16 \left (25 e^{5/2}-25 e^{5/2} x-x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 1.15 \begin {gather*} -\frac {25 e^{5/2} (1-x)}{16 \left (25 e^{5/2} (-1+x)+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 20, normalized size = 0.77 \begin {gather*} \frac {25 \, {\left (x - 1\right )} e^{\frac {5}{2}}}{16 \, {\left (x^{2} + 25 \, {\left (x - 1\right )} e^{\frac {5}{2}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 0.88
method | result | size |
gosper | \(\frac {25 \left (x -1\right ) {\mathrm e}^{\frac {5}{2}}}{16 \left (25 \,{\mathrm e}^{\frac {5}{2}} x +x^{2}-25 \,{\mathrm e}^{\frac {5}{2}}\right )}\) | \(23\) |
risch | \(\frac {{\mathrm e}^{\frac {5}{2}} \left (\frac {x}{16}-\frac {1}{16}\right )}{{\mathrm e}^{\frac {5}{2}} x +\frac {x^{2}}{25}-{\mathrm e}^{\frac {5}{2}}}\) | \(25\) |
norman | \(\frac {\frac {25 \,{\mathrm e}^{\frac {5}{2}} x}{16}-\frac {25 \,{\mathrm e}^{\frac {5}{2}}}{16}}{25 \,{\mathrm e}^{\frac {5}{2}} x +x^{2}-25 \,{\mathrm e}^{\frac {5}{2}}}\) | \(27\) |
default | \(-\frac {25 \,{\mathrm e}^{\frac {5}{2}} \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+50 \,{\mathrm e}^{\frac {5}{2}} \textit {\_Z}^{3}+\left (625 \,{\mathrm e}^{5}-50 \,{\mathrm e}^{\frac {5}{2}}\right ) \textit {\_Z}^{2}-1250 \textit {\_Z} \,{\mathrm e}^{5}+625 \,{\mathrm e}^{5}\right )}{\sum }\frac {\left (\textit {\_R}^{2}-2 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{625 \textit {\_R} \,{\mathrm e}^{5}+75 \textit {\_R}^{2} {\mathrm e}^{\frac {5}{2}}+2 \textit {\_R}^{3}-625 \,{\mathrm e}^{5}-50 \,{\mathrm e}^{\frac {5}{2}} \textit {\_R}}\right )}{32}\) | \(85\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {25}{16} \, e^{\frac {5}{2}} \int \frac {x^{2} - 2 \, x}{x^{4} + 625 \, {\left (x^{2} - 2 \, x + 1\right )} e^{5} + 50 \, {\left (x^{3} - x^{2}\right )} e^{\frac {5}{2}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 24, normalized size = 0.92 \begin {gather*} \frac {25\,{\mathrm {e}}^{5/2}\,\left (x-1\right )}{16\,\left (x^2+25\,{\mathrm {e}}^{5/2}\,x-25\,{\mathrm {e}}^{5/2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.05, size = 100, normalized size = 3.85 \begin {gather*} - \frac {x \left (- 15625 e^{\frac {25}{2}} - 5000 e^{10} - 400 e^{\frac {15}{2}}\right ) + 400 e^{\frac {15}{2}} + 5000 e^{10} + 15625 e^{\frac {25}{2}}}{x^{2} \left (256 e^{5} + 3200 e^{\frac {15}{2}} + 10000 e^{10}\right ) + x \left (6400 e^{\frac {15}{2}} + 80000 e^{10} + 250000 e^{\frac {25}{2}}\right ) - 250000 e^{\frac {25}{2}} - 80000 e^{10} - 6400 e^{\frac {15}{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________