Optimal. Leaf size=26 \[ 3+3 \log \left (2-\frac {3+\frac {1}{x}}{3-\frac {16 e^x}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9+e^x (96-144 x)}{512 e^{2 x}+e^x (16-144 x)-3 x+9 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3 (-4+3 x)}{1+32 e^x-3 x}+\frac {9 (-1+x)}{-16 e^x+3 x}\right ) \, dx\\ &=3 \int \frac {-4+3 x}{1+32 e^x-3 x} \, dx+9 \int \frac {-1+x}{-16 e^x+3 x} \, dx\\ &=3 \int \left (-\frac {4}{1+32 e^x-3 x}+\frac {3 x}{1+32 e^x-3 x}\right ) \, dx+9 \int \left (\frac {1}{16 e^x-3 x}+\frac {x}{-16 e^x+3 x}\right ) \, dx\\ &=9 \int \frac {1}{16 e^x-3 x} \, dx+9 \int \frac {x}{1+32 e^x-3 x} \, dx+9 \int \frac {x}{-16 e^x+3 x} \, dx-12 \int \frac {1}{1+32 e^x-3 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 1.00 \begin {gather*} -3 \log \left (16 e^x-3 x\right )+3 \log \left (1+32 e^x-3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.56, size = 24, normalized size = 0.92 \begin {gather*} 3 \, \log \left (-3 \, x + 32 \, e^{x} + 1\right ) - 3 \, \log \left (-3 \, x + 16 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 24, normalized size = 0.92 \begin {gather*} 3 \, \log \left (3 \, x - 32 \, e^{x} - 1\right ) - 3 \, \log \left (-3 \, x + 16 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.81
method | result | size |
risch | \(3 \ln \left (\frac {1}{32}-\frac {3 x}{32}+{\mathrm e}^{x}\right )-3 \ln \left (-\frac {3 x}{16}+{\mathrm e}^{x}\right )\) | \(21\) |
norman | \(-3 \ln \left (3 x -16 \,{\mathrm e}^{x}\right )+3 \ln \left (3 x -32 \,{\mathrm e}^{x}-1\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 20, normalized size = 0.77 \begin {gather*} 3 \, \log \left (-\frac {3}{32} \, x + e^{x} + \frac {1}{32}\right ) - 3 \, \log \left (-\frac {3}{16} \, x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.66, size = 22, normalized size = 0.85 \begin {gather*} 3\,\ln \left (3\,x-32\,{\mathrm {e}}^x-1\right )-3\,\ln \left (x-\frac {16\,{\mathrm {e}}^x}{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 29, normalized size = 1.12 \begin {gather*} - \frac {3 \log {\left (- \frac {3 x}{16} + e^{x} \right )}}{512} + \frac {3 \log {\left (- \frac {3 x}{32} + e^{x} + \frac {1}{32} \right )}}{512} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________