Optimal. Leaf size=35 \[ \frac {4}{-4+x+\frac {3+x}{x}}+\left (2-\frac {1}{3} e^5 (2-\log (2))\right ) \log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 33, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 4, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {2074, 638, 618, 204} \begin {gather*} \frac {4 x}{x^2-3 x+3}+\frac {2}{3} \left (6-e^5 (2-\log (2))\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {12 (-2+x)}{\left (3-3 x+x^2\right )^2}-\frac {4}{3-3 x+x^2}+\frac {2 \left (6-e^5 (2-\log (2))\right )}{3 x}\right ) \, dx\\ &=\frac {2}{3} \left (6-e^5 (2-\log (2))\right ) \log (x)-4 \int \frac {1}{3-3 x+x^2} \, dx-12 \int \frac {-2+x}{\left (3-3 x+x^2\right )^2} \, dx\\ &=\frac {4 x}{3-3 x+x^2}+\frac {2}{3} \left (6-e^5 (2-\log (2))\right ) \log (x)+4 \int \frac {1}{3-3 x+x^2} \, dx+8 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-3+2 x\right )\\ &=\frac {4 x}{3-3 x+x^2}+\frac {8 \tan ^{-1}\left (\frac {3-2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {2}{3} \left (6-e^5 (2-\log (2))\right ) \log (x)-8 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-3+2 x\right )\\ &=\frac {4 x}{3-3 x+x^2}+\frac {2}{3} \left (6-e^5 (2-\log (2))\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 31, normalized size = 0.89 \begin {gather*} \frac {2}{3} \left (\frac {6 x}{3-3 x+x^2}+\left (6+e^5 (-2+\log (2))\right ) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 54, normalized size = 1.54 \begin {gather*} \frac {2 \, {\left ({\left ({\left (x^{2} - 3 \, x + 3\right )} e^{5} \log \relax (2) + 6 \, x^{2} - 2 \, {\left (x^{2} - 3 \, x + 3\right )} e^{5} - 18 \, x + 18\right )} \log \relax (x) + 6 \, x\right )}}{3 \, {\left (x^{2} - 3 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 30, normalized size = 0.86 \begin {gather*} \frac {2}{3} \, {\left (e^{5} \log \relax (2) - 2 \, e^{5} + 6\right )} \log \left ({\left | x \right |}\right ) + \frac {4 \, x}{x^{2} - 3 \, x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 0.86
method | result | size |
default | \(\frac {2 \left ({\mathrm e}^{5} \ln \relax (2)-2 \,{\mathrm e}^{5}+6\right ) \ln \relax (x )}{3}+\frac {4 x}{x^{2}-3 x +3}\) | \(30\) |
norman | \(\frac {4 x}{x^{2}-3 x +3}+\left (\frac {2 \,{\mathrm e}^{5} \ln \relax (2)}{3}-\frac {4 \,{\mathrm e}^{5}}{3}+4\right ) \ln \relax (x )\) | \(30\) |
risch | \(\frac {4 x}{x^{2}-3 x +3}+\frac {2 \,{\mathrm e}^{5} \ln \relax (2) \ln \relax (x )}{3}-\frac {4 \,{\mathrm e}^{5} \ln \relax (x )}{3}+4 \ln \relax (x )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 29, normalized size = 0.83 \begin {gather*} \frac {2}{3} \, {\left (e^{5} \log \relax (2) - 2 \, e^{5} + 6\right )} \log \relax (x) + \frac {4 \, x}{x^{2} - 3 \, x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.08, size = 31, normalized size = 0.89 \begin {gather*} \ln \relax (x)\,\left (\frac {2\,{\mathrm {e}}^5\,\ln \relax (2)}{3}-\frac {4\,{\mathrm {e}}^5}{3}+4\right )+\frac {12\,x}{3\,x^2-9\,x+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.80, size = 31, normalized size = 0.89 \begin {gather*} \frac {4 x}{x^{2} - 3 x + 3} + \frac {2 \left (- 2 e^{5} + 6 + e^{5} \log {\relax (2 )}\right ) \log {\relax (x )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________