Optimal. Leaf size=27 \[ x+x \left (4+\frac {5 \left (-3+2 \log \left (\frac {1}{4} \left (e^x+x\right )^2\right )\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20+25 e^x+5 x}{e^x+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (4+5 e^x+x\right )}{e^x+x} \, dx\\ &=5 \int \frac {4+5 e^x+x}{e^x+x} \, dx\\ &=5 \int \left (5-\frac {4 (-1+x)}{e^x+x}\right ) \, dx\\ &=25 x-20 \int \frac {-1+x}{e^x+x} \, dx\\ &=25 x-20 \int \left (-\frac {1}{e^x+x}+\frac {x}{e^x+x}\right ) \, dx\\ &=25 x+20 \int \frac {1}{e^x+x} \, dx-20 \int \frac {x}{e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 12, normalized size = 0.44 \begin {gather*} 5 \left (x+4 \log \left (e^x+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 11, normalized size = 0.41 \begin {gather*} 5 \, x + 20 \, \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.00, size = 11, normalized size = 0.41 \begin {gather*} 5 \, x + 20 \, \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 12, normalized size = 0.44
method | result | size |
norman | \(5 x +20 \ln \left ({\mathrm e}^{x}+x \right )\) | \(12\) |
risch | \(5 x +20 \ln \left ({\mathrm e}^{x}+x \right )\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 11, normalized size = 0.41 \begin {gather*} 5 \, x + 20 \, \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.95, size = 11, normalized size = 0.41 \begin {gather*} 5\,x+20\,\ln \left (x+{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 10, normalized size = 0.37 \begin {gather*} 5 x + 20 \log {\left (x + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________