Optimal. Leaf size=20 \[ 6-\frac {e^{3-2 x}}{x}+x+e^4 x \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {6688, 2197} \begin {gather*} \left (1+e^4\right ) x-\frac {e^{3-2 x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2197
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+e^4+\frac {e^{3-2 x} (1+2 x)}{x^2}\right ) \, dx\\ &=\left (1+e^4\right ) x+\int \frac {e^{3-2 x} (1+2 x)}{x^2} \, dx\\ &=-\frac {e^{3-2 x}}{x}+\left (1+e^4\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.95 \begin {gather*} -\frac {e^{3-2 x}}{x}+x+e^4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 1.40 \begin {gather*} \frac {{\left ({\left (x^{2} e^{4} + x^{2}\right )} e^{\left (2 \, x\right )} - e^{3}\right )} e^{\left (-2 \, x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 22, normalized size = 1.10 \begin {gather*} \frac {x^{2} e^{4} + x^{2} - e^{\left (-2 \, x + 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.90
method | result | size |
risch | \(x +x \,{\mathrm e}^{4}-\frac {{\mathrm e}^{3-2 x}}{x}\) | \(18\) |
norman | \(\frac {\left (\left ({\mathrm e}^{4}+1\right ) x^{2} {\mathrm e}^{2 x}-{\mathrm e}^{3}\right ) {\mathrm e}^{-2 x}}{x}\) | \(26\) |
default | \(x +{\mathrm e}^{3} \left (-\frac {{\mathrm e}^{-2 x}}{x}+2 \expIntegralEi \left (1, 2 x \right )\right )-2 \,{\mathrm e}^{3} \expIntegralEi \left (1, 2 x \right )+x \,{\mathrm e}^{4}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 23, normalized size = 1.15 \begin {gather*} x e^{4} + 2 \, {\rm Ei}\left (-2 \, x\right ) e^{3} - 2 \, e^{3} \Gamma \left (-1, 2 \, x\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.03, size = 18, normalized size = 0.90 \begin {gather*} x\,\left ({\mathrm {e}}^4+1\right )-\frac {{\mathrm {e}}^{3-2\,x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.75 \begin {gather*} x \left (1 + e^{4}\right ) - \frac {e^{3} e^{- 2 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________