Optimal. Leaf size=15 \[ \frac {1}{e \left (x+\frac {225 x}{\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 22, normalized size of antiderivative = 1.47, number of steps used = 9, number of rules used = 6, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {6688, 12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {1}{e x}-\frac {225}{e x (\log (x)+225)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {225-225 \log (x)-\log ^2(x)}{e x^2 (225+\log (x))^2} \, dx\\ &=\frac {\int \frac {225-225 \log (x)-\log ^2(x)}{x^2 (225+\log (x))^2} \, dx}{e}\\ &=\frac {\int \left (-\frac {1}{x^2}+\frac {225}{x^2 (225+\log (x))^2}+\frac {225}{x^2 (225+\log (x))}\right ) \, dx}{e}\\ &=\frac {1}{e x}+\frac {225 \int \frac {1}{x^2 (225+\log (x))^2} \, dx}{e}+\frac {225 \int \frac {1}{x^2 (225+\log (x))} \, dx}{e}\\ &=\frac {1}{e x}-\frac {225}{e x (225+\log (x))}-\frac {225 \int \frac {1}{x^2 (225+\log (x))} \, dx}{e}+\frac {225 \operatorname {Subst}\left (\int \frac {e^{-x}}{225+x} \, dx,x,\log (x)\right )}{e}\\ &=\frac {1}{e x}+225 e^{224} \text {Ei}(-225-\log (x))-\frac {225}{e x (225+\log (x))}-\frac {225 \operatorname {Subst}\left (\int \frac {e^{-x}}{225+x} \, dx,x,\log (x)\right )}{e}\\ &=\frac {1}{e x}-\frac {225}{e x (225+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 16, normalized size = 1.07 \begin {gather*} \frac {\log (x)}{e (225 x+x \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 17, normalized size = 1.13 \begin {gather*} \frac {\log \relax (x)}{x e \log \relax (x) + 225 \, x e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 17, normalized size = 1.13 \begin {gather*} \frac {\log \relax (x)}{x e \log \relax (x) + 225 \, x e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 1.13
method | result | size |
norman | \(\frac {\ln \relax (x ) {\mathrm e}^{-1}}{x \left (\ln \relax (x )+225\right )}\) | \(17\) |
risch | \(\frac {{\mathrm e}^{-1}}{x}-\frac {225 \,{\mathrm e}^{-1}}{x \left (\ln \relax (x )+225\right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 17, normalized size = 1.13 \begin {gather*} \frac {\log \relax (x)}{x e \log \relax (x) + 225 \, x e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 14, normalized size = 0.93 \begin {gather*} \frac {{\mathrm {e}}^{-1}\,\ln \relax (x)}{x\,\left (\ln \relax (x)+225\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 22, normalized size = 1.47 \begin {gather*} - \frac {225}{e x \log {\relax (x )} + 225 e x} + \frac {1}{e x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________