Optimal. Leaf size=15 \[ \frac {4 e^{16}}{5 \log (-1-x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 2390, 2302, 30} \begin {gather*} \frac {4 e^{16}}{5 \log (-x-1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2302
Rule 2390
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (4 e^{16}\right ) \int \frac {1}{(5+5 x) \log ^2(-1-x)} \, dx\right )\\ &=\left (4 e^{16}\right ) \operatorname {Subst}\left (\int -\frac {1}{5 x \log ^2(x)} \, dx,x,-1-x\right )\\ &=-\left (\frac {1}{5} \left (4 e^{16}\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-1-x\right )\right )\\ &=-\left (\frac {1}{5} \left (4 e^{16}\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-1-x)\right )\right )\\ &=\frac {4 e^{16}}{5 \log (-1-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 15, normalized size = 1.00 \begin {gather*} \frac {4 e^{16}}{5 \log (-1-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 12, normalized size = 0.80 \begin {gather*} \frac {4 \, e^{16}}{5 \, \log \left (-x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 12, normalized size = 0.80 \begin {gather*} \frac {4 \, e^{16}}{5 \, \log \left (-x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 13, normalized size = 0.87
method | result | size |
derivativedivides | \(\frac {4 \,{\mathrm e}^{16}}{5 \ln \left (-x -1\right )}\) | \(13\) |
default | \(\frac {4 \,{\mathrm e}^{16}}{5 \ln \left (-x -1\right )}\) | \(13\) |
norman | \(\frac {4 \,{\mathrm e}^{16}}{5 \ln \left (-x -1\right )}\) | \(13\) |
risch | \(\frac {4 \,{\mathrm e}^{16}}{5 \ln \left (-x -1\right )}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 12, normalized size = 0.80 \begin {gather*} \frac {4 \, e^{16}}{5 \, \log \left (-x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 12, normalized size = 0.80 \begin {gather*} \frac {4\,{\mathrm {e}}^{16}}{5\,\ln \left (-x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.80 \begin {gather*} \frac {4 e^{16}}{5 \log {\left (- x - 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________