Optimal. Leaf size=36 \[ \frac {1}{7} \left (-4+\frac {\left (e^{\frac {1}{25} (-2+x)^2 x^2}+\frac {x}{5}\right )^2}{x}-x\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 89, normalized size of antiderivative = 2.47, number of steps used = 5, number of rules used = 4, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {12, 1594, 6706, 2288} \begin {gather*} -\frac {24 x^2}{175}+\frac {1}{7} e^{\frac {2}{25} \left (x^4-4 x^3+4 x^2\right )}+\frac {2 e^{\frac {1}{25} \left (x^4-4 x^3+4 x^2\right )} \left (x^4-3 x^3+2 x^2\right )}{35 \left (x^3-3 x^2+2 x\right )}-\frac {4 x}{7} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2288
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{875} \int \left (-500-240 x+e^{\frac {2}{25} \left (4 x^2-4 x^3+x^4\right )} \left (80 x-120 x^2+40 x^3\right )+e^{\frac {1}{25} \left (4 x^2-4 x^3+x^4\right )} \left (50+16 x^2-24 x^3+8 x^4\right )\right ) \, dx\\ &=-\frac {4 x}{7}-\frac {24 x^2}{175}+\frac {1}{875} \int e^{\frac {2}{25} \left (4 x^2-4 x^3+x^4\right )} \left (80 x-120 x^2+40 x^3\right ) \, dx+\frac {1}{875} \int e^{\frac {1}{25} \left (4 x^2-4 x^3+x^4\right )} \left (50+16 x^2-24 x^3+8 x^4\right ) \, dx\\ &=-\frac {4 x}{7}-\frac {24 x^2}{175}+\frac {2 e^{\frac {1}{25} \left (4 x^2-4 x^3+x^4\right )} \left (2 x^2-3 x^3+x^4\right )}{35 \left (2 x-3 x^2+x^3\right )}+\frac {1}{875} \int e^{\frac {2}{25} \left (4 x^2-4 x^3+x^4\right )} x \left (80-120 x+40 x^2\right ) \, dx\\ &=\frac {1}{7} e^{\frac {2}{25} \left (4 x^2-4 x^3+x^4\right )}-\frac {4 x}{7}-\frac {24 x^2}{175}+\frac {2 e^{\frac {1}{25} \left (4 x^2-4 x^3+x^4\right )} \left (2 x^2-3 x^3+x^4\right )}{35 \left (2 x-3 x^2+x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 46, normalized size = 1.28 \begin {gather*} \frac {1}{875} \left (125 e^{\frac {2}{25} (-2+x)^2 x^2}+50 e^{\frac {1}{25} (-2+x)^2 x^2} x-20 x (25+6 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 48, normalized size = 1.33 \begin {gather*} -\frac {24}{175} \, x^{2} + \frac {2}{35} \, x e^{\left (\frac {1}{25} \, x^{4} - \frac {4}{25} \, x^{3} + \frac {4}{25} \, x^{2}\right )} - \frac {4}{7} \, x + \frac {1}{7} \, e^{\left (\frac {2}{25} \, x^{4} - \frac {8}{25} \, x^{3} + \frac {8}{25} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 48, normalized size = 1.33 \begin {gather*} -\frac {24}{175} \, x^{2} + \frac {2}{35} \, x e^{\left (\frac {1}{25} \, x^{4} - \frac {4}{25} \, x^{3} + \frac {4}{25} \, x^{2}\right )} - \frac {4}{7} \, x + \frac {1}{7} \, e^{\left (\frac {2}{25} \, x^{4} - \frac {8}{25} \, x^{3} + \frac {8}{25} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 37, normalized size = 1.03
method | result | size |
risch | \(-\frac {4 x}{7}-\frac {24 x^{2}}{175}+\frac {{\mathrm e}^{\frac {2 x^{2} \left (x -2\right )^{2}}{25}}}{7}+\frac {2 \,{\mathrm e}^{\frac {x^{2} \left (x -2\right )^{2}}{25}} x}{35}\) | \(37\) |
default | \(-\frac {4 x}{7}-\frac {24 x^{2}}{175}+\frac {{\mathrm e}^{\frac {2}{25} x^{4}-\frac {8}{25} x^{3}+\frac {8}{25} x^{2}}}{7}+\frac {2 \,{\mathrm e}^{\frac {1}{25} x^{4}-\frac {4}{25} x^{3}+\frac {4}{25} x^{2}} x}{35}\) | \(51\) |
norman | \(-\frac {4 x}{7}-\frac {24 x^{2}}{175}+\frac {{\mathrm e}^{\frac {2}{25} x^{4}-\frac {8}{25} x^{3}+\frac {8}{25} x^{2}}}{7}+\frac {2 \,{\mathrm e}^{\frac {1}{25} x^{4}-\frac {4}{25} x^{3}+\frac {4}{25} x^{2}} x}{35}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 48, normalized size = 1.33 \begin {gather*} -\frac {24}{175} \, x^{2} + \frac {2}{35} \, x e^{\left (\frac {1}{25} \, x^{4} - \frac {4}{25} \, x^{3} + \frac {4}{25} \, x^{2}\right )} - \frac {4}{7} \, x + \frac {1}{7} \, e^{\left (\frac {2}{25} \, x^{4} - \frac {8}{25} \, x^{3} + \frac {8}{25} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.03, size = 48, normalized size = 1.33 \begin {gather*} \frac {{\mathrm {e}}^{\frac {2\,x^4}{25}-\frac {8\,x^3}{25}+\frac {8\,x^2}{25}}}{7}-\frac {4\,x}{7}+\frac {2\,x\,{\mathrm {e}}^{\frac {x^4}{25}-\frac {4\,x^3}{25}+\frac {4\,x^2}{25}}}{35}-\frac {24\,x^2}{175} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 60, normalized size = 1.67 \begin {gather*} - \frac {24 x^{2}}{175} + \frac {2 x e^{\frac {x^{4}}{25} - \frac {4 x^{3}}{25} + \frac {4 x^{2}}{25}}}{35} - \frac {4 x}{7} + \frac {e^{\frac {2 x^{4}}{25} - \frac {8 x^{3}}{25} + \frac {8 x^{2}}{25}}}{7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________