Optimal. Leaf size=25 \[ 1+2 e^{-x}+e^x-x+\log (2+e-x+\log (\log (x))) \]
________________________________________________________________________________________
Rubi [A] time = 2.75, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 9, number of rules used = 5, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6741, 6742, 2194, 6688, 6684} \begin {gather*} -x+2 e^{-x}+e^x+\log (-x+\log (\log (x))+e+2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 6684
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (e^x+\left (-4 x-2 e x+2 x^2+e^{2 x} \left (2 x+e x-x^2\right )+e^x \left (-3 x-e x+x^2\right )\right ) \log (x)+\left (-2 x-e^x x+e^{2 x} x\right ) \log (x) \log (\log (x))\right )}{x \log (x) \left (2 \left (1+\frac {e}{2}\right )-x+\log (\log (x))\right )} \, dx\\ &=\int \left (-2 e^{-x}+e^x+\frac {1-3 \left (1+\frac {e}{3}\right ) x \log (x)+x^2 \log (x)-x \log (x) \log (\log (x))}{x \log (x) \left (2 \left (1+\frac {e}{2}\right )-x+\log (\log (x))\right )}\right ) \, dx\\ &=-\left (2 \int e^{-x} \, dx\right )+\int e^x \, dx+\int \frac {1-3 \left (1+\frac {e}{3}\right ) x \log (x)+x^2 \log (x)-x \log (x) \log (\log (x))}{x \log (x) \left (2 \left (1+\frac {e}{2}\right )-x+\log (\log (x))\right )} \, dx\\ &=2 e^{-x}+e^x+\int \frac {1-x \log (x) (3+e-x+\log (\log (x)))}{x \log (x) \left (2 \left (1+\frac {e}{2}\right )-x+\log (\log (x))\right )} \, dx\\ &=2 e^{-x}+e^x+\int \left (-1+\frac {1-x \log (x)}{x \log (x) \left (2 \left (1+\frac {e}{2}\right )-x+\log (\log (x))\right )}\right ) \, dx\\ &=2 e^{-x}+e^x-x+\int \frac {1-x \log (x)}{x \log (x) \left (2 \left (1+\frac {e}{2}\right )-x+\log (\log (x))\right )} \, dx\\ &=2 e^{-x}+e^x-x+\log (2+e-x+\log (\log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.96 \begin {gather*} 2 e^{-x}+e^x-x+\log (2+e-x+\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 33, normalized size = 1.32 \begin {gather*} -{\left (x e^{x} - e^{x} \log \left (-x + e + \log \left (\log \relax (x)\right ) + 2\right ) - e^{\left (2 \, x\right )} - 2\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 33, normalized size = 1.32 \begin {gather*} -{\left (x e^{x} - e^{x} \log \left (-x + e + \log \left (\log \relax (x)\right ) + 2\right ) - e^{\left (2 \, x\right )} - 2\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 31, normalized size = 1.24
method | result | size |
risch | \(-\left ({\mathrm e}^{x} x -{\mathrm e}^{2 x}-2\right ) {\mathrm e}^{-x}+\ln \left ({\mathrm e}+\ln \left (\ln \relax (x )\right )-x +2\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 30, normalized size = 1.20 \begin {gather*} -{\left (x e^{x} - e^{\left (2 \, x\right )} - 2\right )} e^{\left (-x\right )} + \log \left (-x + e + \log \left (\log \relax (x)\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.66, size = 23, normalized size = 0.92 \begin {gather*} 2\,{\mathrm {e}}^{-x}-x+\ln \left (\ln \left (\ln \relax (x)\right )-x+\mathrm {e}+2\right )+{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.69, size = 22, normalized size = 0.88 \begin {gather*} - x + e^{x} + \log {\left (- x + \log {\left (\log {\relax (x )} \right )} + 2 + e \right )} + 2 e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________