Optimal. Leaf size=22 \[ 2 e^{-\left (\left (2+e^{e^x}\right ) \left (8+\frac {x^2}{9}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{9} e^{\frac {1}{9} \left (-144-2 x^2-e^{e^x} \left (72+x^2\right )\right )} \left (-8 x+e^{e^x} \left (-4 x+e^x \left (-144-2 x^2\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int e^{\frac {1}{9} \left (-144-2 x^2-e^{e^x} \left (72+x^2\right )\right )} \left (-8 x+e^{e^x} \left (-4 x+e^x \left (-144-2 x^2\right )\right )\right ) \, dx\\ &=\frac {1}{9} \int e^{-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} \left (-8 x+e^{e^x} \left (-4 x+e^x \left (-144-2 x^2\right )\right )\right ) \, dx\\ &=\frac {1}{9} \int \left (-8 e^{-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x-2 e^{e^x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} \left (72 e^x+2 x+e^x x^2\right )\right ) \, dx\\ &=-\left (\frac {2}{9} \int e^{e^x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} \left (72 e^x+2 x+e^x x^2\right ) \, dx\right )-\frac {8}{9} \int e^{-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x \, dx\\ &=-\left (\frac {2}{9} \int \left (72 e^{e^x+x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )}+2 e^{e^x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x+e^{e^x+x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x^2\right ) \, dx\right )-\frac {8}{9} \int e^{-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x \, dx\\ &=-\left (\frac {2}{9} \int e^{e^x+x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x^2 \, dx\right )-\frac {4}{9} \int e^{e^x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x \, dx-\frac {8}{9} \int e^{-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} x \, dx-16 \int e^{e^x+x-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 20, normalized size = 0.91 \begin {gather*} 2 e^{-\frac {1}{9} \left (2+e^{e^x}\right ) \left (72+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 20, normalized size = 0.91 \begin {gather*} 2 \, e^{\left (-\frac {2}{9} \, x^{2} - \frac {1}{9} \, {\left (x^{2} + 72\right )} e^{\left (e^{x}\right )} - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 23, normalized size = 1.05 \begin {gather*} 2 \, e^{\left (-\frac {1}{9} \, x^{2} e^{\left (e^{x}\right )} - \frac {2}{9} \, x^{2} - 8 \, e^{\left (e^{x}\right )} - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.73
method | result | size |
risch | \(2 \,{\mathrm e}^{-\frac {\left (x^{2}+72\right ) \left (2+{\mathrm e}^{{\mathrm e}^{x}}\right )}{9}}\) | \(16\) |
norman | \(2 \,{\mathrm e}^{-\frac {\left (x^{2}+72\right ) {\mathrm e}^{{\mathrm e}^{x}}}{9}-\frac {2 x^{2}}{9}-16}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 23, normalized size = 1.05 \begin {gather*} 2 \, e^{\left (-\frac {1}{9} \, x^{2} e^{\left (e^{x}\right )} - \frac {2}{9} \, x^{2} - 8 \, e^{\left (e^{x}\right )} - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 25, normalized size = 1.14 \begin {gather*} 2\,{\mathrm {e}}^{-8\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{-16}\,{\mathrm {e}}^{-\frac {2\,x^2}{9}}\,{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{{\mathrm {e}}^x}}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 24, normalized size = 1.09 \begin {gather*} 2 e^{- \frac {2 x^{2}}{9} - \left (\frac {x^{2}}{9} + 8\right ) e^{e^{x}} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________