Optimal. Leaf size=27 \[ \frac {13}{2}+x+(5+x) \left (\frac {e^x}{x}-\log \left (\frac {5+x}{3}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 10, number of rules used = 7, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {14, 2199, 2194, 2177, 2178, 2389, 2295} \begin {gather*} x+e^x+\frac {5 e^x}{x}+x \log (3)-(x+5) \log (x+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2295
Rule 2389
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x \left (-5+5 x+x^2\right )}{x^2}+\log (3)-\log (5+x)\right ) \, dx\\ &=x \log (3)+\int \frac {e^x \left (-5+5 x+x^2\right )}{x^2} \, dx-\int \log (5+x) \, dx\\ &=x \log (3)+\int \left (e^x-\frac {5 e^x}{x^2}+\frac {5 e^x}{x}\right ) \, dx-\operatorname {Subst}(\int \log (x) \, dx,x,5+x)\\ &=x+x \log (3)-(5+x) \log (5+x)-5 \int \frac {e^x}{x^2} \, dx+5 \int \frac {e^x}{x} \, dx+\int e^x \, dx\\ &=e^x+\frac {5 e^x}{x}+x+5 \text {Ei}(x)+x \log (3)-(5+x) \log (5+x)-5 \int \frac {e^x}{x} \, dx\\ &=e^x+\frac {5 e^x}{x}+x+x \log (3)-(5+x) \log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 30, normalized size = 1.11 \begin {gather*} e^x+\frac {5 e^x}{x}+x+x \log (3)-5 \log (5+x)-x \log (5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 29, normalized size = 1.07 \begin {gather*} \frac {x^{2} + {\left (x + 5\right )} e^{x} - {\left (x^{2} + 5 \, x\right )} \log \left (\frac {1}{3} \, x + \frac {5}{3}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 37, normalized size = 1.37 \begin {gather*} -\frac {x^{2} \log \left (\frac {1}{3} \, x + \frac {5}{3}\right ) - x^{2} - x e^{x} + 5 \, x \log \left (x + 5\right ) - 5 \, e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 0.96
method | result | size |
default | \(\frac {5 \,{\mathrm e}^{x}}{x}+{\mathrm e}^{x}-3 \ln \left (\frac {5}{3}+\frac {x}{3}\right ) \left (\frac {5}{3}+\frac {x}{3}\right )+5+x\) | \(26\) |
norman | \(\frac {x^{2}+{\mathrm e}^{x} x -5 x \ln \left (\frac {5}{3}+\frac {x}{3}\right )-x^{2} \ln \left (\frac {5}{3}+\frac {x}{3}\right )+5 \,{\mathrm e}^{x}}{x}\) | \(37\) |
risch | \(-x \ln \left (\frac {5}{3}+\frac {x}{3}\right )-\frac {5 x \ln \left (5+x \right )-x^{2}-{\mathrm e}^{x} x -5 \,{\mathrm e}^{x}}{x}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 27, normalized size = 1.00 \begin {gather*} -{\left (x + 5\right )} \log \left (\frac {1}{3} \, x + \frac {5}{3}\right ) + x + 5 \, {\rm Ei}\relax (x) + e^{x} - 5 \, \Gamma \left (-1, -x\right ) + 5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 26, normalized size = 0.96 \begin {gather*} x-5\,\ln \left (x+5\right )+{\mathrm {e}}^x+\frac {5\,{\mathrm {e}}^x}{x}-x\,\ln \left (\frac {x}{3}+\frac {5}{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 26, normalized size = 0.96 \begin {gather*} - x \log {\left (\frac {x}{3} + \frac {5}{3} \right )} + x - 5 \log {\left (x + 5 \right )} + \frac {\left (x + 5\right ) e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________