Optimal. Leaf size=22 \[ \log \left (9+\frac {9}{x}+x+\left (2+4 e^{x^2}\right ) x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9+x^2+4 x^3+e^{x^2} \left (8 x^3+8 x^5\right )}{9 x+9 x^2+x^3+2 x^4+4 e^{x^2} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (1+x^2\right )}{x}-\frac {27+18 x+19 x^2+18 x^3+2 x^4+4 x^5}{x \left (9+9 x+x^2+2 x^3+4 e^{x^2} x^3\right )}\right ) \, dx\\ &=2 \int \frac {1+x^2}{x} \, dx-\int \frac {27+18 x+19 x^2+18 x^3+2 x^4+4 x^5}{x \left (9+9 x+x^2+2 x^3+4 e^{x^2} x^3\right )} \, dx\\ &=2 \int \left (\frac {1}{x}+x\right ) \, dx-\int \left (\frac {18}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3}+\frac {27}{x \left (9+9 x+x^2+2 x^3+4 e^{x^2} x^3\right )}+\frac {19 x}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3}+\frac {18 x^2}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3}+\frac {2 x^3}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3}+\frac {4 x^4}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3}\right ) \, dx\\ &=x^2+2 \log (x)-2 \int \frac {x^3}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3} \, dx-4 \int \frac {x^4}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3} \, dx-18 \int \frac {1}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3} \, dx-18 \int \frac {x^2}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3} \, dx-19 \int \frac {x}{9+9 x+x^2+2 x^3+4 e^{x^2} x^3} \, dx-27 \int \frac {1}{x \left (9+9 x+x^2+2 x^3+4 e^{x^2} x^3\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 29, normalized size = 1.32 \begin {gather*} -\log (x)+\log \left (9+9 x+x^2+2 x^3+4 e^{x^2} x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 32, normalized size = 1.45 \begin {gather*} 2 \, \log \relax (x) + \log \left (\frac {4 \, x^{3} e^{\left (x^{2}\right )} + 2 \, x^{3} + x^{2} + 9 \, x + 9}{x^{3}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 28, normalized size = 1.27 \begin {gather*} \log \left (4 \, x^{3} e^{\left (x^{2}\right )} + 2 \, x^{3} + x^{2} + 9 \, x + 9\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.32
method | result | size |
norman | \(-\ln \relax (x )+\ln \left (4 x^{3} {\mathrm e}^{x^{2}}+2 x^{3}+x^{2}+9 x +9\right )\) | \(29\) |
risch | \(2 \ln \relax (x )+\ln \left ({\mathrm e}^{x^{2}}+\frac {2 x^{3}+x^{2}+9 x +9}{4 x^{3}}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.50 \begin {gather*} 2 \, \log \relax (x) + \log \left (\frac {4 \, x^{3} e^{\left (x^{2}\right )} + 2 \, x^{3} + x^{2} + 9 \, x + 9}{4 \, x^{3}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 28, normalized size = 1.27 \begin {gather*} \ln \left (9\,x+4\,x^3\,{\mathrm {e}}^{x^2}+x^2+2\,x^3+9\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 29, normalized size = 1.32 \begin {gather*} 2 \log {\relax (x )} + \log {\left (e^{x^{2}} + \frac {2 x^{3} + x^{2} + 9 x + 9}{4 x^{3}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________