Optimal. Leaf size=25 \[ e^{25+\frac {3 x}{e (4+x) \log (x)}-\log ^2(x)} \]
________________________________________________________________________________________
Rubi [A] time = 3.93, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, integrand size = 94, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {1594, 27, 6688, 6706} \begin {gather*} \exp \left (-\log ^2(x)+\frac {3 x}{e x \log (x)+4 e \log (x)}+25\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {\frac {3 x}{e}+(100+25 x) \log (x)+(-4-x) \log ^3(x)}{(4+x) \log (x)}\right ) \left (\frac {3 \left (-4 x-x^2\right )}{e}+\frac {12 x \log (x)}{e}+\left (-32-16 x-2 x^2\right ) \log ^3(x)\right )}{x \left (16+8 x+x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {\exp \left (\frac {\frac {3 x}{e}+(100+25 x) \log (x)+(-4-x) \log ^3(x)}{(4+x) \log (x)}\right ) \left (\frac {3 \left (-4 x-x^2\right )}{e}+\frac {12 x \log (x)}{e}+\left (-32-16 x-2 x^2\right ) \log ^3(x)\right )}{x (4+x)^2 \log ^2(x)} \, dx\\ &=\int \frac {e^{24-\log ^2(x)+\frac {3 x}{4 e \log (x)+e x \log (x)}} \left (-3 x (4+x)+12 x \log (x)-2 e (4+x)^2 \log ^3(x)\right )}{x (4+x)^2 \log ^2(x)} \, dx\\ &=e^{25-\log ^2(x)+\frac {3 x}{4 e \log (x)+e x \log (x)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 25, normalized size = 1.00 \begin {gather*} e^{25+\frac {3 x}{e (4+x) \log (x)}-\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 36, normalized size = 1.44 \begin {gather*} e^{\left (-\frac {{\left (x + 4\right )} \log \relax (x)^{3} - x e^{\left (\log \relax (3) - 1\right )} - 25 \, {\left (x + 4\right )} \log \relax (x)}{{\left (x + 4\right )} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.95, size = 86, normalized size = 3.44 \begin {gather*} e^{\left (-\frac {x \log \relax (x)^{3}}{x \log \relax (x) + 4 \, \log \relax (x)} - \frac {4 \, \log \relax (x)^{3}}{x \log \relax (x) + 4 \, \log \relax (x)} + \frac {x e^{\left (\log \relax (3) - 1\right )}}{x \log \relax (x) + 4 \, \log \relax (x)} + \frac {25 \, x \log \relax (x)}{x \log \relax (x) + 4 \, \log \relax (x)} + \frac {100 \, \log \relax (x)}{x \log \relax (x) + 4 \, \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 40, normalized size = 1.60
method | result | size |
risch | \({\mathrm e}^{\frac {-x \ln \relax (x )^{3}-4 \ln \relax (x )^{3}+25 x \ln \relax (x )+3 \,{\mathrm e}^{-1} x +100 \ln \relax (x )}{\left (4+x \right ) \ln \relax (x )}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.90, size = 34, normalized size = 1.36 \begin {gather*} e^{\left (-\log \relax (x)^{2} + \frac {3 \, e^{\left (-1\right )}}{\log \relax (x)} - \frac {12}{{\left (x e + 4 \, e\right )} \log \relax (x)} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.92, size = 53, normalized size = 2.12 \begin {gather*} x^{\frac {25}{\ln \relax (x)}}\,{\mathrm {e}}^{-\frac {4\,{\ln \relax (x)}^2}{x+4}}\,{\mathrm {e}}^{-\frac {x\,{\ln \relax (x)}^2}{x+4}}\,{\mathrm {e}}^{\frac {3\,x}{4\,\mathrm {e}\,\ln \relax (x)+x\,\mathrm {e}\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.98, size = 32, normalized size = 1.28 \begin {gather*} e^{\frac {\frac {3 x}{e} + \left (- x - 4\right ) \log {\relax (x )}^{3} + \left (25 x + 100\right ) \log {\relax (x )}}{\left (x + 4\right ) \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________