Optimal. Leaf size=27 \[ 5-\frac {1+\frac {1}{3} x^3 \left (4+\frac {2+x}{x^2}\right )+\log (x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 14, 2304} \begin {gather*} -\frac {4 x^2}{3}-\frac {x}{3}-\frac {1}{x}-\frac {\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-x^2-8 x^3+3 \log (x)}{x^2} \, dx\\ &=\frac {1}{3} \int \left (-1-8 x+\frac {3 \log (x)}{x^2}\right ) \, dx\\ &=-\frac {x}{3}-\frac {4 x^2}{3}+\int \frac {\log (x)}{x^2} \, dx\\ &=-\frac {1}{x}-\frac {x}{3}-\frac {4 x^2}{3}-\frac {\log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 25, normalized size = 0.93 \begin {gather*} -\frac {1}{x}-\frac {x}{3}-\frac {4 x^2}{3}-\frac {\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 19, normalized size = 0.70 \begin {gather*} -\frac {4 \, x^{3} + x^{2} + 3 \, \log \relax (x) + 3}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 21, normalized size = 0.78 \begin {gather*} -\frac {4}{3} \, x^{2} - \frac {1}{3} \, x - \frac {\log \relax (x)}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 0.78
method | result | size |
norman | \(\frac {-1-\frac {x^{2}}{3}-\frac {4 x^{3}}{3}-\ln \relax (x )}{x}\) | \(21\) |
default | \(-\frac {\ln \relax (x )}{x}-\frac {1}{x}-\frac {4 x^{2}}{3}-\frac {x}{3}\) | \(22\) |
risch | \(-\frac {\ln \relax (x )}{x}-\frac {4 x^{3}+x^{2}+3}{3 x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 21, normalized size = 0.78 \begin {gather*} -\frac {4}{3} \, x^{2} - \frac {1}{3} \, x - \frac {\log \relax (x)}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.61, size = 18, normalized size = 0.67 \begin {gather*} -\frac {x}{3}-\frac {\ln \relax (x)+1}{x}-\frac {4\,x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 0.70 \begin {gather*} - \frac {4 x^{2}}{3} - \frac {x}{3} - \frac {\log {\relax (x )}}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________