Optimal. Leaf size=26 \[ x \left (-x+\frac {x}{5+x \left (6 x+\log \left (\frac {36}{x}\right )\right )+\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-41 x+x^2-120 x^3-72 x^5+\left (-19 x^2-24 x^4\right ) \log \left (\frac {36}{x}\right )-2 x^3 \log ^2\left (\frac {36}{x}\right )+\left (-18 x-24 x^3-4 x^2 \log \left (\frac {36}{x}\right )\right ) \log (x)-2 x \log ^2(x)}{25+60 x^2+36 x^4+\left (10 x+12 x^3\right ) \log \left (\frac {36}{x}\right )+x^2 \log ^2\left (\frac {36}{x}\right )+\left (10+12 x^2+2 x \log \left (\frac {36}{x}\right )\right ) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-41+x-120 x^2-72 x^4-2 x^2 \log ^2\left (\frac {36}{x}\right )-6 \left (3+4 x^2\right ) \log (x)-2 \log ^2(x)-x \log \left (\frac {36}{x}\right ) \left (19+24 x^2+4 \log (x)\right )\right )}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2} \, dx\\ &=\int \left (-2 x-\frac {x \left (1-x+12 x^2+x \log \left (\frac {36}{x}\right )\right )}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2}+\frac {2 x}{5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)}\right ) \, dx\\ &=-x^2+2 \int \frac {x}{5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)} \, dx-\int \frac {x \left (1-x+12 x^2+x \log \left (\frac {36}{x}\right )\right )}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2} \, dx\\ &=-x^2+2 \int \frac {x}{5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)} \, dx-\int \left (\frac {x}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2}-\frac {x^2}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2}+\frac {12 x^3}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2}+\frac {x^2 \log \left (\frac {36}{x}\right )}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2}\right ) \, dx\\ &=-x^2+2 \int \frac {x}{5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)} \, dx-12 \int \frac {x^3}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2} \, dx-\int \frac {x}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2} \, dx+\int \frac {x^2}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2} \, dx-\int \frac {x^2 \log \left (\frac {36}{x}\right )}{\left (5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 29, normalized size = 1.12 \begin {gather*} -x^2+\frac {x^2}{5+6 x^2+x \log \left (\frac {36}{x}\right )+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 59, normalized size = 2.27 \begin {gather*} -\frac {6 \, x^{4} + 2 \, x^{2} \log \relax (6) + 4 \, x^{2} + {\left (x^{3} - x^{2}\right )} \log \left (\frac {36}{x}\right )}{6 \, x^{2} + {\left (x - 1\right )} \log \left (\frac {36}{x}\right ) + 2 \, \log \relax (6) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 31, normalized size = 1.19 \begin {gather*} -x^{2} + \frac {x^{2}}{6 \, x^{2} + 2 \, x \log \relax (6) - x \log \relax (x) + \log \relax (x) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 40, normalized size = 1.54
method | result | size |
risch | \(-x^{2}+\frac {2 x^{2}}{10+4 x \ln \relax (2)+4 x \ln \relax (3)+12 x^{2}-2 x \ln \relax (x )+2 \ln \relax (x )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 60, normalized size = 2.31 \begin {gather*} -\frac {6 \, x^{4} + 2 \, x^{3} {\left (\log \relax (3) + \log \relax (2)\right )} + 4 \, x^{2} - {\left (x^{3} - x^{2}\right )} \log \relax (x)}{6 \, x^{2} + 2 \, x {\left (\log \relax (3) + \log \relax (2)\right )} - {\left (x - 1\right )} \log \relax (x) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.63, size = 41, normalized size = 1.58 \begin {gather*} -\frac {x^2\,\left (\ln \relax (x)+x\,\ln \left (\frac {36}{x}\right )+6\,x^2+4\right )}{\ln \relax (x)+x\,\ln \left (\frac {36}{x}\right )+6\,x^2+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 27, normalized size = 1.04 \begin {gather*} - x^{2} - \frac {x^{2}}{- 6 x^{2} - 2 x \log {\relax (6 )} + \left (x - 1\right ) \log {\relax (x )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________