3.69.44 128480x+600x2154x3240x4+150x5+24x630x7+2x9+e10(32x16x4)64240x+300x277x3120x4+75x5+12x615x7+x9dx

Optimal. Leaf size=26 2x+4e10x2(4x(5x2))2

________________________________________________________________________________________

Rubi [B]  time = 0.31, antiderivative size = 96, normalized size of antiderivative = 3.69, number of steps used = 11, number of rules used = 5, integrand size = 94, number of rulesintegrand size = 0.053, Rules used = {2074, 638, 614, 618, 206} 21e10(2x+1)17(x2x+4)+e10(43x+166)17(x2x+4)+e10(7x+20)(x2x+4)2+2x5e101x+e10(1x)2

Antiderivative was successfully verified.

[In]

Int[(128 - 480*x + 600*x^2 - 154*x^3 - 240*x^4 + 150*x^5 + 24*x^6 - 30*x^7 + 2*x^9 + E^10*(32*x - 16*x^4))/(64
 - 240*x + 300*x^2 - 77*x^3 - 120*x^4 + 75*x^5 + 12*x^6 - 15*x^7 + x^9),x]

[Out]

E^10/(1 - x)^2 - (5*E^10)/(1 - x) + 2*x + (E^10*(20 + 7*x))/(4 - x - x^2)^2 + (21*E^10*(1 + 2*x))/(17*(4 - x -
 x^2)) + (E^10*(166 + 43*x))/(17*(4 - x - x^2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 638

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

integral=(22e10(1+x)35e10(1+x)22e10(76+33x)(4+x+x2)3+e10(30+17x)(4+x+x2)2+5e104+x+x2)dx=e10(1x)25e101x+2x+e1030+17x(4+x+x2)2dx(2e10)76+33x(4+x+x2)3dx+(5e10)14+x+x2dx=e10(1x)25e101x+2x+e10(20+7x)(4xx2)2+e10(166+43x)17(4xx2)117(43e10)14+x+x2dx(10e10)Subst(117x2dx,x,1+2x)+(21e10)1(4+x+x2)2dx=e10(1x)25e101x+2x+e10(20+7x)(4xx2)2+21e10(1+2x)17(4xx2)+e10(166+43x)17(4xx2)10e10tanh1(1+2x17)17117(42e10)14+x+x2dx+117(86e10)Subst(117x2dx,x,1+2x)=e10(1x)25e101x+2x+e10(20+7x)(4xx2)2+21e10(1+2x)17(4xx2)+e10(166+43x)17(4xx2)84e10tanh1(1+2x17)1717+117(84e10)Subst(117x2dx,x,1+2x)=e10(1x)25e101x+2x+e10(20+7x)(4xx2)2+21e10(1+2x)17(4xx2)+e10(166+43x)17(4xx2)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 22, normalized size = 0.85 2(x+2e10x2(45x+x3)2)

Antiderivative was successfully verified.

[In]

Integrate[(128 - 480*x + 600*x^2 - 154*x^3 - 240*x^4 + 150*x^5 + 24*x^6 - 30*x^7 + 2*x^9 + E^10*(32*x - 16*x^4
))/(64 - 240*x + 300*x^2 - 77*x^3 - 120*x^4 + 75*x^5 + 12*x^6 - 15*x^7 + x^9),x]

[Out]

2*(x + (2*E^10*x^2)/(4 - 5*x + x^3)^2)

________________________________________________________________________________________

fricas [B]  time = 0.61, size = 61, normalized size = 2.35 2(x710x5+8x4+25x3+2x2e1040x2+16x)x610x4+8x3+25x240x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+
12*x^6+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x, algorithm="fricas")

[Out]

2*(x^7 - 10*x^5 + 8*x^4 + 25*x^3 + 2*x^2*e^10 - 40*x^2 + 16*x)/(x^6 - 10*x^4 + 8*x^3 + 25*x^2 - 40*x + 16)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 21, normalized size = 0.81 2x+4x2e10(x35x+4)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+
12*x^6+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x, algorithm="giac")

[Out]

2*x + 4*x^2*e^10/(x^3 - 5*x + 4)^2

________________________________________________________________________________________

maple [A]  time = 0.08, size = 37, normalized size = 1.42




method result size



risch 2x+4e10x2x610x4+8x3+25x240x+16 37
default 2x+e10(5x316x2+16x+64)(x2+x4)2+e10(x1)2+5e10x1 48
norman 16x4+32x+50x3+(4e1080)x220x5+2x7(x35x+4)2 48
gosper 2x(x610x4+2xe10+8x3+25x240x+16)x610x4+8x3+25x240x+16 59



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+12*x^6
+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x,method=_RETURNVERBOSE)

[Out]

2*x+4*exp(10)*x^2/(x^6-10*x^4+8*x^3+25*x^2-40*x+16)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 36, normalized size = 1.38 4x2e10x610x4+8x3+25x240x+16+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+
12*x^6+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x, algorithm="maxima")

[Out]

4*x^2*e^10/(x^6 - 10*x^4 + 8*x^3 + 25*x^2 - 40*x + 16) + 2*x

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 21, normalized size = 0.81 2x+4x2e10(x35x+4)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(10)*(32*x - 16*x^4) - 480*x + 600*x^2 - 154*x^3 - 240*x^4 + 150*x^5 + 24*x^6 - 30*x^7 + 2*x^9 + 128)/
(300*x^2 - 240*x - 77*x^3 - 120*x^4 + 75*x^5 + 12*x^6 - 15*x^7 + x^9 + 64),x)

[Out]

2*x + (4*x^2*exp(10))/(x^3 - 5*x + 4)^2

________________________________________________________________________________________

sympy [A]  time = 0.46, size = 34, normalized size = 1.31 4x2e10x610x4+8x3+25x240x+16+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x**4+32*x)*exp(5)**2+2*x**9-30*x**7+24*x**6+150*x**5-240*x**4-154*x**3+600*x**2-480*x+128)/(x*
*9-15*x**7+12*x**6+75*x**5-120*x**4-77*x**3+300*x**2-240*x+64),x)

[Out]

4*x**2*exp(10)/(x**6 - 10*x**4 + 8*x**3 + 25*x**2 - 40*x + 16) + 2*x

________________________________________________________________________________________