3.69.44
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 96, normalized size of antiderivative = 3.69,
number of steps used = 11, number of rules used = 5, integrand size = 94, = 0.053, Rules used
= {2074, 638, 614, 618, 206}
Antiderivative was successfully verified.
[In]
Int[(128 - 480*x + 600*x^2 - 154*x^3 - 240*x^4 + 150*x^5 + 24*x^6 - 30*x^7 + 2*x^9 + E^10*(32*x - 16*x^4))/(64
- 240*x + 300*x^2 - 77*x^3 - 120*x^4 + 75*x^5 + 12*x^6 - 15*x^7 + x^9),x]
[Out]
E^10/(1 - x)^2 - (5*E^10)/(1 - x) + 2*x + (E^10*(20 + 7*x))/(4 - x - x^2)^2 + (21*E^10*(1 + 2*x))/(17*(4 - x -
x^2)) + (E^10*(166 + 43*x))/(17*(4 - x - x^2))
Rule 206
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])
Rule 614
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]
Rule 618
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
Rule 638
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 0.85
Antiderivative was successfully verified.
[In]
Integrate[(128 - 480*x + 600*x^2 - 154*x^3 - 240*x^4 + 150*x^5 + 24*x^6 - 30*x^7 + 2*x^9 + E^10*(32*x - 16*x^4
))/(64 - 240*x + 300*x^2 - 77*x^3 - 120*x^4 + 75*x^5 + 12*x^6 - 15*x^7 + x^9),x]
[Out]
2*(x + (2*E^10*x^2)/(4 - 5*x + x^3)^2)
________________________________________________________________________________________
fricas [B] time = 0.61, size = 61, normalized size = 2.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+
12*x^6+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x, algorithm="fricas")
[Out]
2*(x^7 - 10*x^5 + 8*x^4 + 25*x^3 + 2*x^2*e^10 - 40*x^2 + 16*x)/(x^6 - 10*x^4 + 8*x^3 + 25*x^2 - 40*x + 16)
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+
12*x^6+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x, algorithm="giac")
[Out]
2*x + 4*x^2*e^10/(x^3 - 5*x + 4)^2
________________________________________________________________________________________
maple [A] time = 0.08, size = 37, normalized size = 1.42
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
norman |
|
|
gosper |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+12*x^6
+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x,method=_RETURNVERBOSE)
[Out]
2*x+4*exp(10)*x^2/(x^6-10*x^4+8*x^3+25*x^2-40*x+16)
________________________________________________________________________________________
maxima [A] time = 0.35, size = 36, normalized size = 1.38
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x^4+32*x)*exp(5)^2+2*x^9-30*x^7+24*x^6+150*x^5-240*x^4-154*x^3+600*x^2-480*x+128)/(x^9-15*x^7+
12*x^6+75*x^5-120*x^4-77*x^3+300*x^2-240*x+64),x, algorithm="maxima")
[Out]
4*x^2*e^10/(x^6 - 10*x^4 + 8*x^3 + 25*x^2 - 40*x + 16) + 2*x
________________________________________________________________________________________
mupad [B] time = 0.09, size = 21, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(10)*(32*x - 16*x^4) - 480*x + 600*x^2 - 154*x^3 - 240*x^4 + 150*x^5 + 24*x^6 - 30*x^7 + 2*x^9 + 128)/
(300*x^2 - 240*x - 77*x^3 - 120*x^4 + 75*x^5 + 12*x^6 - 15*x^7 + x^9 + 64),x)
[Out]
2*x + (4*x^2*exp(10))/(x^3 - 5*x + 4)^2
________________________________________________________________________________________
sympy [A] time = 0.46, size = 34, normalized size = 1.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x**4+32*x)*exp(5)**2+2*x**9-30*x**7+24*x**6+150*x**5-240*x**4-154*x**3+600*x**2-480*x+128)/(x*
*9-15*x**7+12*x**6+75*x**5-120*x**4-77*x**3+300*x**2-240*x+64),x)
[Out]
4*x**2*exp(10)/(x**6 - 10*x**4 + 8*x**3 + 25*x**2 - 40*x + 16) + 2*x
________________________________________________________________________________________