3.69.47 244140000e12585938000x644531700x2429687600x3193359382x461875000x514437500x62475000x7309375x827500x91650x1060x11x12+e8(18751500x450x260x33x4)+e4(11718741875000x1312500x2525000x3131250x421000x52100x6120x73x8)488280000x+2e12x+1171874000x2+1289062200x3+859374960x4+386718748x5+123750000x6+28875000x7+4950000x8+618750x9+55000x10+3300x11+120x12+2x13+e8(3750x+3000x2+900x3+120x4+6x5)+e4(2343748x+3750000x2+2625000x3+1050000x4+262500x5+42000x6+4200x7+240x8+6x9)dx

Optimal. Leaf size=28 3+12log(4x+x(e4+(5+x)4)2)

________________________________________________________________________________________

Rubi [B]  time = 1.55, antiderivative size = 81, normalized size of antiderivative = 2.89, number of steps used = 6, number of rules used = 3, integrand size = 282, number of rulesintegrand size = 0.011, Rules used = {6, 2074, 1587} 12log(x4+20x3+150x2+500x+e4+624)+log(x4+20x3+150x2+500x+e4+625)12log(x4+20x3+150x2+500x+e4+626)log(x)2

Antiderivative was successfully verified.

[In]

Int[(-244140000 - E^12 - 585938000*x - 644531700*x^2 - 429687600*x^3 - 193359382*x^4 - 61875000*x^5 - 14437500
*x^6 - 2475000*x^7 - 309375*x^8 - 27500*x^9 - 1650*x^10 - 60*x^11 - x^12 + E^8*(-1875 - 1500*x - 450*x^2 - 60*
x^3 - 3*x^4) + E^4*(-1171874 - 1875000*x - 1312500*x^2 - 525000*x^3 - 131250*x^4 - 21000*x^5 - 2100*x^6 - 120*
x^7 - 3*x^8))/(488280000*x + 2*E^12*x + 1171874000*x^2 + 1289062200*x^3 + 859374960*x^4 + 386718748*x^5 + 1237
50000*x^6 + 28875000*x^7 + 4950000*x^8 + 618750*x^9 + 55000*x^10 + 3300*x^11 + 120*x^12 + 2*x^13 + E^8*(3750*x
 + 3000*x^2 + 900*x^3 + 120*x^4 + 6*x^5) + E^4*(2343748*x + 3750000*x^2 + 2625000*x^3 + 1050000*x^4 + 262500*x
^5 + 42000*x^6 + 4200*x^7 + 240*x^8 + 6*x^9)),x]

[Out]

-1/2*Log[x] - Log[624 + E^4 + 500*x + 150*x^2 + 20*x^3 + x^4]/2 + Log[625 + E^4 + 500*x + 150*x^2 + 20*x^3 + x
^4] - Log[626 + E^4 + 500*x + 150*x^2 + 20*x^3 + x^4]/2

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 1587

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

integral=244140000e12585938000x644531700x2429687600x3193359382x461875000x514437500x62475000x7309375x827500x91650x1060x11x12+e8(18751500x450x260x33x4)+e4(11718741875000x1312500x2525000x3131250x421000x52100x6120x73x8)(488280000+2e12)x+1171874000x2+1289062200x3+859374960x4+386718748x5+123750000x6+28875000x7+4950000x8+618750x9+55000x10+3300x11+120x12+2x13+e8(3750x+3000x2+900x3+120x4+6x5)+e4(2343748x+3750000x2+2625000x3+1050000x4+262500x5+42000x6+4200x7+240x8+6x9)dx=(12x2(5+x)3624+e4+500x+150x2+20x3+x4+4(5+x)3625+e4+500x+150x2+20x3+x42(5+x)3626+e4+500x+150x2+20x3+x4)dx=log(x)22(5+x)3624+e4+500x+150x2+20x3+x4dx2(5+x)3626+e4+500x+150x2+20x3+x4dx+4(5+x)3625+e4+500x+150x2+20x3+x4dx=log(x)212log(624+e4+500x+150x2+20x3+x4)+log(625+e4+500x+150x2+20x3+x4)12log(626+e4+500x+150x2+20x3+x4)

________________________________________________________________________________________

Mathematica [B]  time = 0.27, size = 112, normalized size = 4.00 12(log(x)+2log(625+e4+500x+150x2+20x3+x4)log(390624+1250e4+e8+625000x+1000e4x+437500x2+300e4x2+175000x3+40e4x3+43750x4+2e4x4+7000x5+700x6+40x7+x8))

Antiderivative was successfully verified.

[In]

Integrate[(-244140000 - E^12 - 585938000*x - 644531700*x^2 - 429687600*x^3 - 193359382*x^4 - 61875000*x^5 - 14
437500*x^6 - 2475000*x^7 - 309375*x^8 - 27500*x^9 - 1650*x^10 - 60*x^11 - x^12 + E^8*(-1875 - 1500*x - 450*x^2
 - 60*x^3 - 3*x^4) + E^4*(-1171874 - 1875000*x - 1312500*x^2 - 525000*x^3 - 131250*x^4 - 21000*x^5 - 2100*x^6
- 120*x^7 - 3*x^8))/(488280000*x + 2*E^12*x + 1171874000*x^2 + 1289062200*x^3 + 859374960*x^4 + 386718748*x^5
+ 123750000*x^6 + 28875000*x^7 + 4950000*x^8 + 618750*x^9 + 55000*x^10 + 3300*x^11 + 120*x^12 + 2*x^13 + E^8*(
3750*x + 3000*x^2 + 900*x^3 + 120*x^4 + 6*x^5) + E^4*(2343748*x + 3750000*x^2 + 2625000*x^3 + 1050000*x^4 + 26
2500*x^5 + 42000*x^6 + 4200*x^7 + 240*x^8 + 6*x^9)),x]

[Out]

(-Log[x] + 2*Log[625 + E^4 + 500*x + 150*x^2 + 20*x^3 + x^4] - Log[390624 + 1250*E^4 + E^8 + 625000*x + 1000*E
^4*x + 437500*x^2 + 300*E^4*x^2 + 175000*x^3 + 40*E^4*x^3 + 43750*x^4 + 2*E^4*x^4 + 7000*x^5 + 700*x^6 + 40*x^
7 + x^8])/2

________________________________________________________________________________________

fricas [B]  time = 0.82, size = 97, normalized size = 3.46 12log(x9+40x8+700x7+7000x6+43750x5+175000x4+437500x3+625000x2+xe8+2(x5+20x4+150x3+500x2+625x)e4+390624x)+log(x4+20x3+150x2+500x+e4+625)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^
4-525000*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-144
37500*x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+1
20*x^4+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+
3750000*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+1237500
00*x^6+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x, algorithm="fricas")

[Out]

-1/2*log(x^9 + 40*x^8 + 700*x^7 + 7000*x^6 + 43750*x^5 + 175000*x^4 + 437500*x^3 + 625000*x^2 + x*e^8 + 2*(x^5
 + 20*x^4 + 150*x^3 + 500*x^2 + 625*x)*e^4 + 390624*x) + log(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 625)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^
4-525000*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-144
37500*x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+1
20*x^4+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+
3750000*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+1237500
00*x^6+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 1.34, size = 73, normalized size = 2.61




method result size



norman ln(x)2ln(x4+20x3+150x2+e4+500x+624)2ln(x4+20x3+150x2+e4+500x+626)2+ln(x4+20x3+150x2+e4+500x+625) 73
risch ln(x420x3150x2e4500x625)ln(x9+40x8+700x7+7000x6+(2e4+43750)x5+(40e4+175000)x4+(300e4+437500)x3+(1000e4+625000)x2+(e8+1250e4+390624)x)2 99
default ln(x)2+(_R=RootOf(_Z12+60_Z11+1650_Z10+27500_Z9+(3e4+309375)_Z8+(120e4+2475000)_Z7+(2100e4+14437500)_Z6+(21000e4+61875000)_Z5+(3e8+131250e4+193359374)_Z4+(60e8+525000e4+429687480)_Z3+(450e8+1312500e4+644531100)_Z2+(1500e8+1875000e4+585937000)_Z+e12+1875e8+1171874e4+244140000)(_R315_R275_R125)ln(x_R)146484250+375e8+225_Re8+468750e4+165_R10+3_R11+4331250_R6+618750_R7+4125_R9+61875_R8+21656250_R5+77343750_R4+193359374_R3+322265610_R2+322265550_R+210_R6e4+6_R7e4+393750_R2e4+656250_Re4+3_R3e8+45_R2e8+131250_R3e4+26250_R4e4+3150_R5e4) 287



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^4-5250
00*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-14437500*
x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+120*x^4
+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+375000
0*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+123750000*x^6
+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x,method=_RETURNVERBOSE)

[Out]

-1/2*ln(x)-1/2*ln(x^4+20*x^3+150*x^2+exp(4)+500*x+624)-1/2*ln(x^4+20*x^3+150*x^2+exp(4)+500*x+626)+ln(x^4+20*x
^3+150*x^2+exp(4)+500*x+625)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 72, normalized size = 2.57 12log(x4+20x3+150x2+500x+e4+626)+log(x4+20x3+150x2+500x+e4+625)12log(x4+20x3+150x2+500x+e4+624)12log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^
4-525000*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-144
37500*x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+1
20*x^4+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+
3750000*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+1237500
00*x^6+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x, algorithm="maxima")

[Out]

-1/2*log(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 626) + log(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 625) - 1/2*l
og(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 624) - 1/2*log(x)

________________________________________________________________________________________

mupad [B]  time = 5.49, size = 97, normalized size = 3.46 ln(x4+20x3+150x2+500x+e4+625)ln(x(625000x+1250e4+e8+1000xe4+300x2e4+40x3e4+2x4e4+437500x2+175000x3+43750x4+7000x5+700x6+40x7+x8+390624))2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(585938000*x + exp(12) + exp(4)*(1875000*x + 1312500*x^2 + 525000*x^3 + 131250*x^4 + 21000*x^5 + 2100*x^6
 + 120*x^7 + 3*x^8 + 1171874) + exp(8)*(1500*x + 450*x^2 + 60*x^3 + 3*x^4 + 1875) + 644531700*x^2 + 429687600*
x^3 + 193359382*x^4 + 61875000*x^5 + 14437500*x^6 + 2475000*x^7 + 309375*x^8 + 27500*x^9 + 1650*x^10 + 60*x^11
 + x^12 + 244140000)/(488280000*x + 2*x*exp(12) + exp(4)*(2343748*x + 3750000*x^2 + 2625000*x^3 + 1050000*x^4
+ 262500*x^5 + 42000*x^6 + 4200*x^7 + 240*x^8 + 6*x^9) + exp(8)*(3750*x + 3000*x^2 + 900*x^3 + 120*x^4 + 6*x^5
) + 1171874000*x^2 + 1289062200*x^3 + 859374960*x^4 + 386718748*x^5 + 123750000*x^6 + 28875000*x^7 + 4950000*x
^8 + 618750*x^9 + 55000*x^10 + 3300*x^11 + 120*x^12 + 2*x^13),x)

[Out]

log(500*x + exp(4) + 150*x^2 + 20*x^3 + x^4 + 625) - log(x*(625000*x + 1250*exp(4) + exp(8) + 1000*x*exp(4) +
300*x^2*exp(4) + 40*x^3*exp(4) + 2*x^4*exp(4) + 437500*x^2 + 175000*x^3 + 43750*x^4 + 7000*x^5 + 700*x^6 + 40*
x^7 + x^8 + 390624))/2

________________________________________________________________________________________

sympy [B]  time = 41.52, size = 97, normalized size = 3.46 log(x4+20x3+150x2+500x+e4+625)log(x9+40x8+700x7+7000x6+x5(2e4+43750)+x4(40e4+175000)+x3(300e4+437500)+x2(1000e4+625000)+x(e8+1250e4+390624))2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(4)**3+(-3*x**4-60*x**3-450*x**2-1500*x-1875)*exp(4)**2+(-3*x**8-120*x**7-2100*x**6-21000*x**5-
131250*x**4-525000*x**3-1312500*x**2-1875000*x-1171874)*exp(4)-x**12-60*x**11-1650*x**10-27500*x**9-309375*x**
8-2475000*x**7-14437500*x**6-61875000*x**5-193359382*x**4-429687600*x**3-644531700*x**2-585938000*x-244140000)
/(2*x*exp(4)**3+(6*x**5+120*x**4+900*x**3+3000*x**2+3750*x)*exp(4)**2+(6*x**9+240*x**8+4200*x**7+42000*x**6+26
2500*x**5+1050000*x**4+2625000*x**3+3750000*x**2+2343748*x)*exp(4)+2*x**13+120*x**12+3300*x**11+55000*x**10+61
8750*x**9+4950000*x**8+28875000*x**7+123750000*x**6+386718748*x**5+859374960*x**4+1289062200*x**3+1171874000*x
**2+488280000*x),x)

[Out]

log(x**4 + 20*x**3 + 150*x**2 + 500*x + exp(4) + 625) - log(x**9 + 40*x**8 + 700*x**7 + 7000*x**6 + x**5*(2*ex
p(4) + 43750) + x**4*(40*exp(4) + 175000) + x**3*(300*exp(4) + 437500) + x**2*(1000*exp(4) + 625000) + x*(exp(
8) + 1250*exp(4) + 390624))/2

________________________________________________________________________________________