3.69.47
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [B] time = 1.55, antiderivative size = 81, normalized size of antiderivative = 2.89,
number of steps used = 6, number of rules used = 3, integrand size = 282, = 0.011, Rules used
= {6, 2074, 1587}
Antiderivative was successfully verified.
[In]
Int[(-244140000 - E^12 - 585938000*x - 644531700*x^2 - 429687600*x^3 - 193359382*x^4 - 61875000*x^5 - 14437500
*x^6 - 2475000*x^7 - 309375*x^8 - 27500*x^9 - 1650*x^10 - 60*x^11 - x^12 + E^8*(-1875 - 1500*x - 450*x^2 - 60*
x^3 - 3*x^4) + E^4*(-1171874 - 1875000*x - 1312500*x^2 - 525000*x^3 - 131250*x^4 - 21000*x^5 - 2100*x^6 - 120*
x^7 - 3*x^8))/(488280000*x + 2*E^12*x + 1171874000*x^2 + 1289062200*x^3 + 859374960*x^4 + 386718748*x^5 + 1237
50000*x^6 + 28875000*x^7 + 4950000*x^8 + 618750*x^9 + 55000*x^10 + 3300*x^11 + 120*x^12 + 2*x^13 + E^8*(3750*x
+ 3000*x^2 + 900*x^3 + 120*x^4 + 6*x^5) + E^4*(2343748*x + 3750000*x^2 + 2625000*x^3 + 1050000*x^4 + 262500*x
^5 + 42000*x^6 + 4200*x^7 + 240*x^8 + 6*x^9)),x]
[Out]
-1/2*Log[x] - Log[624 + E^4 + 500*x + 150*x^2 + 20*x^3 + x^4]/2 + Log[625 + E^4 + 500*x + 150*x^2 + 20*x^3 + x
^4] - Log[626 + E^4 + 500*x + 150*x^2 + 20*x^3 + x^4]/2
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 1587
Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.27, size = 112, normalized size = 4.00
Antiderivative was successfully verified.
[In]
Integrate[(-244140000 - E^12 - 585938000*x - 644531700*x^2 - 429687600*x^3 - 193359382*x^4 - 61875000*x^5 - 14
437500*x^6 - 2475000*x^7 - 309375*x^8 - 27500*x^9 - 1650*x^10 - 60*x^11 - x^12 + E^8*(-1875 - 1500*x - 450*x^2
- 60*x^3 - 3*x^4) + E^4*(-1171874 - 1875000*x - 1312500*x^2 - 525000*x^3 - 131250*x^4 - 21000*x^5 - 2100*x^6
- 120*x^7 - 3*x^8))/(488280000*x + 2*E^12*x + 1171874000*x^2 + 1289062200*x^3 + 859374960*x^4 + 386718748*x^5
+ 123750000*x^6 + 28875000*x^7 + 4950000*x^8 + 618750*x^9 + 55000*x^10 + 3300*x^11 + 120*x^12 + 2*x^13 + E^8*(
3750*x + 3000*x^2 + 900*x^3 + 120*x^4 + 6*x^5) + E^4*(2343748*x + 3750000*x^2 + 2625000*x^3 + 1050000*x^4 + 26
2500*x^5 + 42000*x^6 + 4200*x^7 + 240*x^8 + 6*x^9)),x]
[Out]
(-Log[x] + 2*Log[625 + E^4 + 500*x + 150*x^2 + 20*x^3 + x^4] - Log[390624 + 1250*E^4 + E^8 + 625000*x + 1000*E
^4*x + 437500*x^2 + 300*E^4*x^2 + 175000*x^3 + 40*E^4*x^3 + 43750*x^4 + 2*E^4*x^4 + 7000*x^5 + 700*x^6 + 40*x^
7 + x^8])/2
________________________________________________________________________________________
fricas [B] time = 0.82, size = 97, normalized size = 3.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^
4-525000*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-144
37500*x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+1
20*x^4+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+
3750000*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+1237500
00*x^6+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x, algorithm="fricas")
[Out]
-1/2*log(x^9 + 40*x^8 + 700*x^7 + 7000*x^6 + 43750*x^5 + 175000*x^4 + 437500*x^3 + 625000*x^2 + x*e^8 + 2*(x^5
+ 20*x^4 + 150*x^3 + 500*x^2 + 625*x)*e^4 + 390624*x) + log(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 625)
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^
4-525000*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-144
37500*x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+1
20*x^4+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+
3750000*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+1237500
00*x^6+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x, algorithm="giac")
[Out]
Timed out
________________________________________________________________________________________
maple [B] time = 1.34, size = 73, normalized size = 2.61
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^4-5250
00*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-14437500*
x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+120*x^4
+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+375000
0*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+123750000*x^6
+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x,method=_RETURNVERBOSE)
[Out]
-1/2*ln(x)-1/2*ln(x^4+20*x^3+150*x^2+exp(4)+500*x+624)-1/2*ln(x^4+20*x^3+150*x^2+exp(4)+500*x+626)+ln(x^4+20*x
^3+150*x^2+exp(4)+500*x+625)
________________________________________________________________________________________
maxima [B] time = 0.37, size = 72, normalized size = 2.57
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(4)^3+(-3*x^4-60*x^3-450*x^2-1500*x-1875)*exp(4)^2+(-3*x^8-120*x^7-2100*x^6-21000*x^5-131250*x^
4-525000*x^3-1312500*x^2-1875000*x-1171874)*exp(4)-x^12-60*x^11-1650*x^10-27500*x^9-309375*x^8-2475000*x^7-144
37500*x^6-61875000*x^5-193359382*x^4-429687600*x^3-644531700*x^2-585938000*x-244140000)/(2*x*exp(4)^3+(6*x^5+1
20*x^4+900*x^3+3000*x^2+3750*x)*exp(4)^2+(6*x^9+240*x^8+4200*x^7+42000*x^6+262500*x^5+1050000*x^4+2625000*x^3+
3750000*x^2+2343748*x)*exp(4)+2*x^13+120*x^12+3300*x^11+55000*x^10+618750*x^9+4950000*x^8+28875000*x^7+1237500
00*x^6+386718748*x^5+859374960*x^4+1289062200*x^3+1171874000*x^2+488280000*x),x, algorithm="maxima")
[Out]
-1/2*log(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 626) + log(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 625) - 1/2*l
og(x^4 + 20*x^3 + 150*x^2 + 500*x + e^4 + 624) - 1/2*log(x)
________________________________________________________________________________________
mupad [B] time = 5.49, size = 97, normalized size = 3.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(585938000*x + exp(12) + exp(4)*(1875000*x + 1312500*x^2 + 525000*x^3 + 131250*x^4 + 21000*x^5 + 2100*x^6
+ 120*x^7 + 3*x^8 + 1171874) + exp(8)*(1500*x + 450*x^2 + 60*x^3 + 3*x^4 + 1875) + 644531700*x^2 + 429687600*
x^3 + 193359382*x^4 + 61875000*x^5 + 14437500*x^6 + 2475000*x^7 + 309375*x^8 + 27500*x^9 + 1650*x^10 + 60*x^11
+ x^12 + 244140000)/(488280000*x + 2*x*exp(12) + exp(4)*(2343748*x + 3750000*x^2 + 2625000*x^3 + 1050000*x^4
+ 262500*x^5 + 42000*x^6 + 4200*x^7 + 240*x^8 + 6*x^9) + exp(8)*(3750*x + 3000*x^2 + 900*x^3 + 120*x^4 + 6*x^5
) + 1171874000*x^2 + 1289062200*x^3 + 859374960*x^4 + 386718748*x^5 + 123750000*x^6 + 28875000*x^7 + 4950000*x
^8 + 618750*x^9 + 55000*x^10 + 3300*x^11 + 120*x^12 + 2*x^13),x)
[Out]
log(500*x + exp(4) + 150*x^2 + 20*x^3 + x^4 + 625) - log(x*(625000*x + 1250*exp(4) + exp(8) + 1000*x*exp(4) +
300*x^2*exp(4) + 40*x^3*exp(4) + 2*x^4*exp(4) + 437500*x^2 + 175000*x^3 + 43750*x^4 + 7000*x^5 + 700*x^6 + 40*
x^7 + x^8 + 390624))/2
________________________________________________________________________________________
sympy [B] time = 41.52, size = 97, normalized size = 3.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(4)**3+(-3*x**4-60*x**3-450*x**2-1500*x-1875)*exp(4)**2+(-3*x**8-120*x**7-2100*x**6-21000*x**5-
131250*x**4-525000*x**3-1312500*x**2-1875000*x-1171874)*exp(4)-x**12-60*x**11-1650*x**10-27500*x**9-309375*x**
8-2475000*x**7-14437500*x**6-61875000*x**5-193359382*x**4-429687600*x**3-644531700*x**2-585938000*x-244140000)
/(2*x*exp(4)**3+(6*x**5+120*x**4+900*x**3+3000*x**2+3750*x)*exp(4)**2+(6*x**9+240*x**8+4200*x**7+42000*x**6+26
2500*x**5+1050000*x**4+2625000*x**3+3750000*x**2+2343748*x)*exp(4)+2*x**13+120*x**12+3300*x**11+55000*x**10+61
8750*x**9+4950000*x**8+28875000*x**7+123750000*x**6+386718748*x**5+859374960*x**4+1289062200*x**3+1171874000*x
**2+488280000*x),x)
[Out]
log(x**4 + 20*x**3 + 150*x**2 + 500*x + exp(4) + 625) - log(x**9 + 40*x**8 + 700*x**7 + 7000*x**6 + x**5*(2*ex
p(4) + 43750) + x**4*(40*exp(4) + 175000) + x**3*(300*exp(4) + 437500) + x**2*(1000*exp(4) + 625000) + x*(exp(
8) + 1250*exp(4) + 390624))/2
________________________________________________________________________________________