3.69.49
Optimal. Leaf size=34
________________________________________________________________________________________
Rubi [F] time = 157.70, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(200 + 100*x + E^(6*x^2 - 2*x^3)*(8 + 4*x) + E^(3*x^2 - x^3)*(80 + 40*x) + E^((2*(39*x + 8*E^(3*x^2 - x^3)
*x))/(20 + 4*E^(3*x^2 - x^3)))*(100*x + 195*x^2 + E^(6*x^2 - 2*x^3)*(4*x + 8*x^2) + E^(3*x^2 - x^3)*(40*x + 79
*x^2 + 6*x^4 - 3*x^5)) + E^((39*x + 8*E^(3*x^2 - x^3)*x)/(20 + 4*E^(3*x^2 - x^3)))*(-200 - 590*x - 195*x^2 + E
^(6*x^2 - 2*x^3)*(-8 - 24*x - 8*x^2) + E^(3*x^2 - x^3)*(-80 - 238*x - 79*x^2 - 12*x^3 + 3*x^5)))/(50 + 2*E^(6*
x^2 - 2*x^3) + 20*E^(3*x^2 - x^3)),x]
[Out]
4*x + x^2 - 4*Defer[Int][E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(4*(E^(3*x^2) + 5*E^x^3))), x] - 12*Defer[Int][E^(((8
*E^(3*x^2) + 39*E^x^3)*x)/(4*(E^(3*x^2) + 5*E^x^3)))*x, x] + 2*Defer[Int][E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(2*(
E^(3*x^2) + 5*E^x^3)))*x, x] + Defer[Int][E^(2*x^3 - (x*(4*E^(3*x^2)*(-2 + 3*x + x^2) + E^x^3*(-39 + 60*x + 20
*x^2)))/(4*(E^(3*x^2) + 5*E^x^3)))*x, x] - 5*Defer[Int][(E^(2*x^3 - (x*(4*E^(3*x^2)*(-2 + 3*x) + E^x^3*(-39 +
60*x)))/(4*(E^(3*x^2) + 5*E^x^3)))*x)/(E^(3*x^2) + 5*E^x^3), x] - 4*Defer[Int][E^(((8*E^(3*x^2) + 39*E^x^3)*x)
/(4*(E^(3*x^2) + 5*E^x^3)))*x^2, x] + 4*Defer[Int][E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(2*(E^(3*x^2) + 5*E^x^3)))*
x^2, x] - Defer[Int][E^((x*(2*E^(3*x^2)*(4 - 3*x + x^2) + E^x^3*(39 - 30*x + 10*x^2)))/(2*(E^(3*x^2) + 5*E^x^3
)))*x^2, x]/2 + Defer[Int][E^(2*x^3 - (x*(4*E^(3*x^2)*(-2 + 3*x + x^2) + E^x^3*(-39 + 60*x + 20*x^2)))/(4*(E^(
3*x^2) + 5*E^x^3)))*x^2, x]/2 + (5*Defer[Int][(E^((x*(E^(3*x^2)*(8 - 6*x + 4*x^2) + E^x^3*(39 - 30*x + 20*x^2)
))/(2*(E^(3*x^2) + 5*E^x^3)))*x^2)/(E^(3*x^2) + 5*E^x^3), x])/2 - (5*Defer[Int][(E^(2*x^3 - (x*(4*E^(3*x^2)*(-
2 + 3*x) + E^x^3*(-39 + 60*x)))/(4*(E^(3*x^2) + 5*E^x^3)))*x^2)/(E^(3*x^2) + 5*E^x^3), x])/2 - 6*Defer[Int][E^
(2*x^3 - (x*(4*E^(3*x^2)*(-2 + 3*x + x^2) + E^x^3*(-39 + 60*x + 20*x^2)))/(4*(E^(3*x^2) + 5*E^x^3)))*x^3, x] +
30*Defer[Int][(E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(4*(E^(3*x^2) + 5*E^x^3)) + 2*x^3)*x^3)/(E^(3*x^2) + 5*E^x^3)^
2, x] + 30*Defer[Int][(E^(2*x^3 - (x*(4*E^(3*x^2)*(-2 + 3*x) + E^x^3*(-39 + 60*x)))/(4*(E^(3*x^2) + 5*E^x^3)))
*x^3)/(E^(3*x^2) + 5*E^x^3), x] + 3*Defer[Int][E^((x*(2*E^(3*x^2)*(4 - 3*x + x^2) + E^x^3*(39 - 30*x + 10*x^2)
))/(2*(E^(3*x^2) + 5*E^x^3)))*x^4, x] - 15*Defer[Int][(E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(2*(E^(3*x^2) + 5*E^x^3
)) + 2*x^3)*x^4)/(E^(3*x^2) + 5*E^x^3)^2, x] - 15*Defer[Int][(E^((x*(E^(3*x^2)*(8 - 6*x + 4*x^2) + E^x^3*(39 -
30*x + 20*x^2)))/(2*(E^(3*x^2) + 5*E^x^3)))*x^4)/(E^(3*x^2) + 5*E^x^3), x] - (3*Defer[Int][E^((x*(2*E^(3*x^2)
*(4 - 3*x + x^2) + E^x^3*(39 - 30*x + 10*x^2)))/(2*(E^(3*x^2) + 5*E^x^3)))*x^5, x])/2 + (3*Defer[Int][E^(2*x^3
- (x*(4*E^(3*x^2)*(-2 + 3*x + x^2) + E^x^3*(-39 + 60*x + 20*x^2)))/(4*(E^(3*x^2) + 5*E^x^3)))*x^5, x])/2 - (1
5*Defer[Int][(E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(4*(E^(3*x^2) + 5*E^x^3)) + 2*x^3)*x^5)/(E^(3*x^2) + 5*E^x^3)^2,
x])/2 + (15*Defer[Int][(E^(((8*E^(3*x^2) + 39*E^x^3)*x)/(2*(E^(3*x^2) + 5*E^x^3)) + 2*x^3)*x^5)/(E^(3*x^2) +
5*E^x^3)^2, x])/2 + (15*Defer[Int][(E^((x*(E^(3*x^2)*(8 - 6*x + 4*x^2) + E^x^3*(39 - 30*x + 20*x^2)))/(2*(E^(3
*x^2) + 5*E^x^3)))*x^5)/(E^(3*x^2) + 5*E^x^3), x])/2 - (15*Defer[Int][(E^(2*x^3 - (x*(4*E^(3*x^2)*(-2 + 3*x) +
E^x^3*(-39 + 60*x)))/(4*(E^(3*x^2) + 5*E^x^3)))*x^5)/(E^(3*x^2) + 5*E^x^3), x])/2
Rubi steps
________________________________________________________________________________________
Mathematica [F] time = 177.60, size = 0, normalized size = 0.00
Verification is not applicable to the result.
[In]
Integrate[(200 + 100*x + E^(6*x^2 - 2*x^3)*(8 + 4*x) + E^(3*x^2 - x^3)*(80 + 40*x) + E^((2*(39*x + 8*E^(3*x^2
- x^3)*x))/(20 + 4*E^(3*x^2 - x^3)))*(100*x + 195*x^2 + E^(6*x^2 - 2*x^3)*(4*x + 8*x^2) + E^(3*x^2 - x^3)*(40*
x + 79*x^2 + 6*x^4 - 3*x^5)) + E^((39*x + 8*E^(3*x^2 - x^3)*x)/(20 + 4*E^(3*x^2 - x^3)))*(-200 - 590*x - 195*x
^2 + E^(6*x^2 - 2*x^3)*(-8 - 24*x - 8*x^2) + E^(3*x^2 - x^3)*(-80 - 238*x - 79*x^2 - 12*x^3 + 3*x^5)))/(50 + 2
*E^(6*x^2 - 2*x^3) + 20*E^(3*x^2 - x^3)),x]
[Out]
Integrate[(200 + 100*x + E^(6*x^2 - 2*x^3)*(8 + 4*x) + E^(3*x^2 - x^3)*(80 + 40*x) + E^((2*(39*x + 8*E^(3*x^2
- x^3)*x))/(20 + 4*E^(3*x^2 - x^3)))*(100*x + 195*x^2 + E^(6*x^2 - 2*x^3)*(4*x + 8*x^2) + E^(3*x^2 - x^3)*(40*
x + 79*x^2 + 6*x^4 - 3*x^5)) + E^((39*x + 8*E^(3*x^2 - x^3)*x)/(20 + 4*E^(3*x^2 - x^3)))*(-200 - 590*x - 195*x
^2 + E^(6*x^2 - 2*x^3)*(-8 - 24*x - 8*x^2) + E^(3*x^2 - x^3)*(-80 - 238*x - 79*x^2 - 12*x^3 + 3*x^5)))/(50 + 2
*E^(6*x^2 - 2*x^3) + 20*E^(3*x^2 - x^3)), x]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 96, normalized size = 2.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x^2+4*x)*exp(-x^3+3*x^2)^2+(-3*x^5+6*x^4+79*x^2+40*x)*exp(-x^3+3*x^2)+195*x^2+100*x)*exp((8*x*e
xp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))^2+((-8*x^2-24*x-8)*exp(-x^3+3*x^2)^2+(3*x^5-12*x^3-79*x^2-238*x-8
0)*exp(-x^3+3*x^2)-195*x^2-590*x-200)*exp((8*x*exp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))+(4*x+8)*exp(-x^3+
3*x^2)^2+(40*x+80)*exp(-x^3+3*x^2)+100*x+200)/(2*exp(-x^3+3*x^2)^2+20*exp(-x^3+3*x^2)+50),x, algorithm="fricas
")
[Out]
x^2*e^(1/2*(8*x*e^(-x^3 + 3*x^2) + 39*x)/(e^(-x^3 + 3*x^2) + 5)) + x^2 - 2*(x^2 + 2*x)*e^(1/4*(8*x*e^(-x^3 + 3
*x^2) + 39*x)/(e^(-x^3 + 3*x^2) + 5)) + 4*x
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x^2+4*x)*exp(-x^3+3*x^2)^2+(-3*x^5+6*x^4+79*x^2+40*x)*exp(-x^3+3*x^2)+195*x^2+100*x)*exp((8*x*e
xp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))^2+((-8*x^2-24*x-8)*exp(-x^3+3*x^2)^2+(3*x^5-12*x^3-79*x^2-238*x-8
0)*exp(-x^3+3*x^2)-195*x^2-590*x-200)*exp((8*x*exp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))+(4*x+8)*exp(-x^3+
3*x^2)^2+(40*x+80)*exp(-x^3+3*x^2)+100*x+200)/(2*exp(-x^3+3*x^2)^2+20*exp(-x^3+3*x^2)+50),x, algorithm="giac")
[Out]
Timed out
________________________________________________________________________________________
maple [B] time = 0.10, size = 82, normalized size = 2.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((8*x^2+4*x)*exp(-x^3+3*x^2)^2+(-3*x^5+6*x^4+79*x^2+40*x)*exp(-x^3+3*x^2)+195*x^2+100*x)*exp((8*x*exp(-x^
3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))^2+((-8*x^2-24*x-8)*exp(-x^3+3*x^2)^2+(3*x^5-12*x^3-79*x^2-238*x-80)*exp
(-x^3+3*x^2)-195*x^2-590*x-200)*exp((8*x*exp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))+(4*x+8)*exp(-x^3+3*x^2)
^2+(40*x+80)*exp(-x^3+3*x^2)+100*x+200)/(2*exp(-x^3+3*x^2)^2+20*exp(-x^3+3*x^2)+50),x,method=_RETURNVERBOSE)
[Out]
x^2*exp(1/2*x*(8*exp(-x^2*(x-3))+39)/(exp(-x^2*(x-3))+5))+x^2+4*x+(-2*x^2-4*x)*exp(1/4*x*(8*exp(-x^2*(x-3))+39
)/(exp(-x^2*(x-3))+5))
________________________________________________________________________________________
maxima [B] time = 0.46, size = 116, normalized size = 3.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x^2+4*x)*exp(-x^3+3*x^2)^2+(-3*x^5+6*x^4+79*x^2+40*x)*exp(-x^3+3*x^2)+195*x^2+100*x)*exp((8*x*e
xp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))^2+((-8*x^2-24*x-8)*exp(-x^3+3*x^2)^2+(3*x^5-12*x^3-79*x^2-238*x-8
0)*exp(-x^3+3*x^2)-195*x^2-590*x-200)*exp((8*x*exp(-x^3+3*x^2)+39*x)/(4*exp(-x^3+3*x^2)+20))+(4*x+8)*exp(-x^3+
3*x^2)^2+(40*x+80)*exp(-x^3+3*x^2)+100*x+200)/(2*exp(-x^3+3*x^2)^2+20*exp(-x^3+3*x^2)+50),x, algorithm="maxima
")
[Out]
x^2*e^(39/2*x*e^(x^3)/(5*e^(x^3) + e^(3*x^2)) + 4*x*e^(3*x^2)/(5*e^(x^3) + e^(3*x^2))) + x^2 - 2*(x^2 + 2*x)*e
^(39/4*x*e^(x^3)/(5*e^(x^3) + e^(3*x^2)) + 2*x*e^(3*x^2)/(5*e^(x^3) + e^(3*x^2))) + 4*x
________________________________________________________________________________________
mupad [B] time = 0.48, size = 134, normalized size = 3.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((100*x + exp((2*(39*x + 8*x*exp(3*x^2 - x^3)))/(4*exp(3*x^2 - x^3) + 20))*(100*x + exp(3*x^2 - x^3)*(40*x
+ 79*x^2 + 6*x^4 - 3*x^5) + 195*x^2 + exp(6*x^2 - 2*x^3)*(4*x + 8*x^2)) - exp((39*x + 8*x*exp(3*x^2 - x^3))/(4
*exp(3*x^2 - x^3) + 20))*(590*x + exp(3*x^2 - x^3)*(238*x + 79*x^2 + 12*x^3 - 3*x^5 + 80) + 195*x^2 + exp(6*x^
2 - 2*x^3)*(24*x + 8*x^2 + 8) + 200) + exp(6*x^2 - 2*x^3)*(4*x + 8) + exp(3*x^2 - x^3)*(40*x + 80) + 200)/(20*
exp(3*x^2 - x^3) + 2*exp(6*x^2 - 2*x^3) + 50),x)
[Out]
4*x - exp((39*x)/(4*exp(-x^3)*exp(3*x^2) + 20) + (8*x*exp(-x^3)*exp(3*x^2))/(4*exp(-x^3)*exp(3*x^2) + 20))*(4*
x + 2*x^2) + x^2*exp((78*x)/(4*exp(-x^3)*exp(3*x^2) + 20) + (16*x*exp(-x^3)*exp(3*x^2))/(4*exp(-x^3)*exp(3*x^2
) + 20)) + x^2
________________________________________________________________________________________
sympy [B] time = 71.71, size = 83, normalized size = 2.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x**2+4*x)*exp(-x**3+3*x**2)**2+(-3*x**5+6*x**4+79*x**2+40*x)*exp(-x**3+3*x**2)+195*x**2+100*x)*
exp((8*x*exp(-x**3+3*x**2)+39*x)/(4*exp(-x**3+3*x**2)+20))**2+((-8*x**2-24*x-8)*exp(-x**3+3*x**2)**2+(3*x**5-1
2*x**3-79*x**2-238*x-80)*exp(-x**3+3*x**2)-195*x**2-590*x-200)*exp((8*x*exp(-x**3+3*x**2)+39*x)/(4*exp(-x**3+3
*x**2)+20))+(4*x+8)*exp(-x**3+3*x**2)**2+(40*x+80)*exp(-x**3+3*x**2)+100*x+200)/(2*exp(-x**3+3*x**2)**2+20*exp
(-x**3+3*x**2)+50),x)
[Out]
x**2*exp(2*(8*x*exp(-x**3 + 3*x**2) + 39*x)/(4*exp(-x**3 + 3*x**2) + 20)) + x**2 + 4*x + (-2*x**2 - 4*x)*exp((
8*x*exp(-x**3 + 3*x**2) + 39*x)/(4*exp(-x**3 + 3*x**2) + 20))
________________________________________________________________________________________