3.69.55 900+300x+(462x4x2)log(4)6x2log2(4)+((462x+154x2)log(4)+(12x22x3)log2(4))log(3+x)+(6x2+2x3)log2(4)log2(3+x)+(12+4x+6xlog(4)+(6x+2x2)log(4)log(3+x))log(9x2)1875x+625x2dx

Optimal. Leaf size=28 (3+125(log(4)(xxlog(3+x))+log(9x2)))2

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, integrand size = 127, number of rulesintegrand size = 0.032, Rules used = {1593, 6688, 12, 6686} 1625(log(9x2)+xlog(4)log(x3)xlog(4)+75)2

Antiderivative was successfully verified.

[In]

Int[(-900 + 300*x + (462*x - 4*x^2)*Log[4] - 6*x^2*Log[4]^2 + ((-462*x + 154*x^2)*Log[4] + (12*x^2 - 2*x^3)*Lo
g[4]^2)*Log[-3 + x] + (-6*x^2 + 2*x^3)*Log[4]^2*Log[-3 + x]^2 + (-12 + 4*x + 6*x*Log[4] + (-6*x + 2*x^2)*Log[4
]*Log[-3 + x])*Log[9*x^2])/(-1875*x + 625*x^2),x]

[Out]

(75 - x*Log[4] + x*Log[4]*Log[-3 + x] + Log[9*x^2])^2/625

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=900+300x+(462x4x2)log(4)6x2log2(4)+((462x+154x2)log(4)+(12x22x3)log2(4))log(3+x)+(6x2+2x3)log2(4)log2(3+x)+(12+4x+6xlog(4)+(6x+2x2)log(4)log(3+x))log(9x2)x(1875+625x)dx=2(6x(2+log(64))(3+x)xlog(4)log(3+x))(75xlog(4)+xlog(4)log(3+x)+log(9x2))625(3x)xdx=2625(6x(2+log(64))(3+x)xlog(4)log(3+x))(75xlog(4)+xlog(4)log(3+x)+log(9x2))(3x)xdx=1625(75xlog(4)+xlog(4)log(3+x)+log(9x2))2

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 27, normalized size = 0.96 1625(75xlog(4)+xlog(4)log(3+x)+log(9x2))2

Antiderivative was successfully verified.

[In]

Integrate[(-900 + 300*x + (462*x - 4*x^2)*Log[4] - 6*x^2*Log[4]^2 + ((-462*x + 154*x^2)*Log[4] + (12*x^2 - 2*x
^3)*Log[4]^2)*Log[-3 + x] + (-6*x^2 + 2*x^3)*Log[4]^2*Log[-3 + x]^2 + (-12 + 4*x + 6*x*Log[4] + (-6*x + 2*x^2)
*Log[4]*Log[-3 + x])*Log[9*x^2])/(-1875*x + 625*x^2),x]

[Out]

(75 - x*Log[4] + x*Log[4]*Log[-3 + x] + Log[9*x^2])^2/625

________________________________________________________________________________________

fricas [B]  time = 0.77, size = 85, normalized size = 3.04 4625x2log(2)2log(x3)2+4625x2log(2)21225xlog(2)+2625(2xlog(2)log(x3)2xlog(2)+75)log(9x2)+1625log(9x2)24625(2x2log(2)275xlog(2))log(x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^2-6*x)*log(2)*log(x-3)+12*x*log(2)+4*x-12)*log(9*x^2)+4*(2*x^3-6*x^2)*log(2)^2*log(x-3)^2+(
4*(-2*x^3+12*x^2)*log(2)^2+2*(154*x^2-462*x)*log(2))*log(x-3)-24*x^2*log(2)^2+2*(-4*x^2+462*x)*log(2)+300*x-90
0)/(625*x^2-1875*x),x, algorithm="fricas")

[Out]

4/625*x^2*log(2)^2*log(x - 3)^2 + 4/625*x^2*log(2)^2 - 12/25*x*log(2) + 2/625*(2*x*log(2)*log(x - 3) - 2*x*log
(2) + 75)*log(9*x^2) + 1/625*log(9*x^2)^2 - 4/625*(2*x^2*log(2)^2 - 75*x*log(2))*log(x - 3)

________________________________________________________________________________________

giac [B]  time = 0.21, size = 85, normalized size = 3.04 4625x2log(2)2log(x3)2+4625x2log(2)21225xlog(2)+4625(xlog(2)log(x3)xlog(2)+log(x))log(9x2)4625(2x2log(2)275xlog(2))log(x3)4625log(x)2+1225log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^2-6*x)*log(2)*log(x-3)+12*x*log(2)+4*x-12)*log(9*x^2)+4*(2*x^3-6*x^2)*log(2)^2*log(x-3)^2+(
4*(-2*x^3+12*x^2)*log(2)^2+2*(154*x^2-462*x)*log(2))*log(x-3)-24*x^2*log(2)^2+2*(-4*x^2+462*x)*log(2)+300*x-90
0)/(625*x^2-1875*x),x, algorithm="giac")

[Out]

4/625*x^2*log(2)^2*log(x - 3)^2 + 4/625*x^2*log(2)^2 - 12/25*x*log(2) + 4/625*(x*log(2)*log(x - 3) - x*log(2)
+ log(x))*log(9*x^2) - 4/625*(2*x^2*log(2)^2 - 75*x*log(2))*log(x - 3) - 4/625*log(x)^2 + 12/25*log(x)

________________________________________________________________________________________

maple [B]  time = 0.18, size = 127, normalized size = 4.54




method result size



default 4x2ln(2)2ln(x3)26258ln(x3)ln(2)2x2625+4x2ln(2)2625108ln(2)2625+8ln(2)ln(x3)xln(3)625+4ln(2)ln(x3)xln(x2)6258xln(2)ln(3)6254xln(2)ln(x2)625+12ln(2)ln(x3)x25+24ln(2)ln(3)62512xln(2)25+924ln(2)625+12ln(x)25+8ln(3)ln(x)625+ln(x2)2625 127
risch 4x2ln(2)2ln(x3)2625+(8xln(2)ln(x)6252iπln(2)xcsgn(ix)2csgn(ix2)625+4iπln(2)xcsgn(ix)csgn(ix2)26252iπln(2)xcsgn(ix2)36258x2ln(2)2625+8xln(2)ln(3)625+12xln(2)25)ln(x3)+4ln(x)26258xln(2)ln(x)6252iπln(x)csgn(ix2)3625+2iπln(2)xcsgn(ix2)36254iπln(2)xcsgn(ix)csgn(ix2)2625+4iπln(x)csgn(ix)csgn(ix2)26252iπln(x)csgn(ix)2csgn(ix2)625+2iπln(2)xcsgn(ix)2csgn(ix2)625+4x2ln(2)26258xln(2)ln(3)62512xln(2)25+8ln(3)ln(x)625+12ln(x)25 266



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*(2*x^2-6*x)*ln(2)*ln(x-3)+12*x*ln(2)+4*x-12)*ln(9*x^2)+4*(2*x^3-6*x^2)*ln(2)^2*ln(x-3)^2+(4*(-2*x^3+12
*x^2)*ln(2)^2+2*(154*x^2-462*x)*ln(2))*ln(x-3)-24*x^2*ln(2)^2+2*(-4*x^2+462*x)*ln(2)+300*x-900)/(625*x^2-1875*
x),x,method=_RETURNVERBOSE)

[Out]

4/625*x^2*ln(2)^2*ln(x-3)^2-8/625*ln(x-3)*ln(2)^2*x^2+4/625*x^2*ln(2)^2-108/625*ln(2)^2+8/625*ln(2)*ln(x-3)*x*
ln(3)+4/625*ln(2)*ln(x-3)*x*ln(x^2)-8/625*x*ln(2)*ln(3)-4/625*x*ln(2)*ln(x^2)+12/25*ln(2)*ln(x-3)*x+24/625*ln(
2)*ln(3)-12/25*x*ln(2)+924/625*ln(2)+12/25*ln(x)+8/625*ln(3)*ln(x)+1/625*ln(x^2)^2

________________________________________________________________________________________

maxima [B]  time = 0.49, size = 319, normalized size = 11.39 4625(x2+6x+18log(x3))log(2)2log(x3)+48625(x+3log(x3))log(2)2log(x3)8625x(log(3)2)log(2)+2625((2log(x3)22log(x3)+1)(x3)2+12log(x3)3+24(log(x3)22log(x3)+2)(x3))log(2)224625(log(x3)3+(log(x3)22log(x3)+2)(x3))log(2)2+2625(x2+18log(x3)2+18x+54log(x3))log(2)224625(3log(x3)2+2x+6log(x3))log(2)224625(x+3log(x3))log(2)2+308625(x+3log(x3))log(2)log(x3)462625log(2)log(x3)2154625(3log(x3)2+2x+6log(x3))log(2)8625(x+3log(x3))log(2)+8625(x(log(3)1)log(2)+xlog(2)log(x)+3log(2))log(x3)+924625log(2)log(x3)8625(xlog(2)log(3))log(x)+4625log(x)2+1225log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^2-6*x)*log(2)*log(x-3)+12*x*log(2)+4*x-12)*log(9*x^2)+4*(2*x^3-6*x^2)*log(2)^2*log(x-3)^2+(
4*(-2*x^3+12*x^2)*log(2)^2+2*(154*x^2-462*x)*log(2))*log(x-3)-24*x^2*log(2)^2+2*(-4*x^2+462*x)*log(2)+300*x-90
0)/(625*x^2-1875*x),x, algorithm="maxima")

[Out]

-4/625*(x^2 + 6*x + 18*log(x - 3))*log(2)^2*log(x - 3) + 48/625*(x + 3*log(x - 3))*log(2)^2*log(x - 3) - 8/625
*x*(log(3) - 2)*log(2) + 2/625*((2*log(x - 3)^2 - 2*log(x - 3) + 1)*(x - 3)^2 + 12*log(x - 3)^3 + 24*(log(x -
3)^2 - 2*log(x - 3) + 2)*(x - 3))*log(2)^2 - 24/625*(log(x - 3)^3 + (log(x - 3)^2 - 2*log(x - 3) + 2)*(x - 3))
*log(2)^2 + 2/625*(x^2 + 18*log(x - 3)^2 + 18*x + 54*log(x - 3))*log(2)^2 - 24/625*(3*log(x - 3)^2 + 2*x + 6*l
og(x - 3))*log(2)^2 - 24/625*(x + 3*log(x - 3))*log(2)^2 + 308/625*(x + 3*log(x - 3))*log(2)*log(x - 3) - 462/
625*log(2)*log(x - 3)^2 - 154/625*(3*log(x - 3)^2 + 2*x + 6*log(x - 3))*log(2) - 8/625*(x + 3*log(x - 3))*log(
2) + 8/625*(x*(log(3) - 1)*log(2) + x*log(2)*log(x) + 3*log(2))*log(x - 3) + 924/625*log(2)*log(x - 3) - 8/625
*(x*log(2) - log(3))*log(x) + 4/625*log(x)^2 + 12/25*log(x)

________________________________________________________________________________________

mupad [B]  time = 4.59, size = 88, normalized size = 3.14 12ln(x)25+4x2ln(2)2625+ln(9x2)2625ln(9x2)(4xln(2)6254xln(x3)ln(2)625)12xln(2)25ln(x3)(8x2ln(2)262512xln(2)25)+4x2ln(x3)2ln(2)2625

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((24*x^2*log(2)^2 - 300*x + log(x - 3)*(2*log(2)*(462*x - 154*x^2) - 4*log(2)^2*(12*x^2 - 2*x^3)) - 2*log(2
)*(462*x - 4*x^2) - log(9*x^2)*(4*x + 12*x*log(2) - 2*log(x - 3)*log(2)*(6*x - 2*x^2) - 12) + 4*log(x - 3)^2*l
og(2)^2*(6*x^2 - 2*x^3) + 900)/(1875*x - 625*x^2),x)

[Out]

(12*log(x))/25 + (4*x^2*log(2)^2)/625 + log(9*x^2)^2/625 - log(9*x^2)*((4*x*log(2))/625 - (4*x*log(x - 3)*log(
2))/625) - (12*x*log(2))/25 - log(x - 3)*((8*x^2*log(2)^2)/625 - (12*x*log(2))/25) + (4*x^2*log(x - 3)^2*log(2
)^2)/625

________________________________________________________________________________________

sympy [B]  time = 0.79, size = 109, normalized size = 3.89 4x2log(2)2log(x3)2625+4x2log(2)262512xlog(2)25+(8x2log(2)2625+12xlog(2)25)log(x3)+(4xlog(2)log(x3)6254xlog(2)625)log(9x2)+12log(x)25+log(9x2)2625

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x**2-6*x)*ln(2)*ln(x-3)+12*x*ln(2)+4*x-12)*ln(9*x**2)+4*(2*x**3-6*x**2)*ln(2)**2*ln(x-3)**2+(
4*(-2*x**3+12*x**2)*ln(2)**2+2*(154*x**2-462*x)*ln(2))*ln(x-3)-24*x**2*ln(2)**2+2*(-4*x**2+462*x)*ln(2)+300*x-
900)/(625*x**2-1875*x),x)

[Out]

4*x**2*log(2)**2*log(x - 3)**2/625 + 4*x**2*log(2)**2/625 - 12*x*log(2)/25 + (-8*x**2*log(2)**2/625 + 12*x*log
(2)/25)*log(x - 3) + (4*x*log(2)*log(x - 3)/625 - 4*x*log(2)/625)*log(9*x**2) + 12*log(x)/25 + log(9*x**2)**2/
625

________________________________________________________________________________________