3.69.55
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 27, normalized size of antiderivative = 0.96,
number of steps used = 4, number of rules used = 4, integrand size = 127, = 0.032, Rules used
= {1593, 6688, 12, 6686}
Antiderivative was successfully verified.
[In]
Int[(-900 + 300*x + (462*x - 4*x^2)*Log[4] - 6*x^2*Log[4]^2 + ((-462*x + 154*x^2)*Log[4] + (12*x^2 - 2*x^3)*Lo
g[4]^2)*Log[-3 + x] + (-6*x^2 + 2*x^3)*Log[4]^2*Log[-3 + x]^2 + (-12 + 4*x + 6*x*Log[4] + (-6*x + 2*x^2)*Log[4
]*Log[-3 + x])*Log[9*x^2])/(-1875*x + 625*x^2),x]
[Out]
(75 - x*Log[4] + x*Log[4]*Log[-3 + x] + Log[9*x^2])^2/625
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 27, normalized size = 0.96
Antiderivative was successfully verified.
[In]
Integrate[(-900 + 300*x + (462*x - 4*x^2)*Log[4] - 6*x^2*Log[4]^2 + ((-462*x + 154*x^2)*Log[4] + (12*x^2 - 2*x
^3)*Log[4]^2)*Log[-3 + x] + (-6*x^2 + 2*x^3)*Log[4]^2*Log[-3 + x]^2 + (-12 + 4*x + 6*x*Log[4] + (-6*x + 2*x^2)
*Log[4]*Log[-3 + x])*Log[9*x^2])/(-1875*x + 625*x^2),x]
[Out]
(75 - x*Log[4] + x*Log[4]*Log[-3 + x] + Log[9*x^2])^2/625
________________________________________________________________________________________
fricas [B] time = 0.77, size = 85, normalized size = 3.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^2-6*x)*log(2)*log(x-3)+12*x*log(2)+4*x-12)*log(9*x^2)+4*(2*x^3-6*x^2)*log(2)^2*log(x-3)^2+(
4*(-2*x^3+12*x^2)*log(2)^2+2*(154*x^2-462*x)*log(2))*log(x-3)-24*x^2*log(2)^2+2*(-4*x^2+462*x)*log(2)+300*x-90
0)/(625*x^2-1875*x),x, algorithm="fricas")
[Out]
4/625*x^2*log(2)^2*log(x - 3)^2 + 4/625*x^2*log(2)^2 - 12/25*x*log(2) + 2/625*(2*x*log(2)*log(x - 3) - 2*x*log
(2) + 75)*log(9*x^2) + 1/625*log(9*x^2)^2 - 4/625*(2*x^2*log(2)^2 - 75*x*log(2))*log(x - 3)
________________________________________________________________________________________
giac [B] time = 0.21, size = 85, normalized size = 3.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^2-6*x)*log(2)*log(x-3)+12*x*log(2)+4*x-12)*log(9*x^2)+4*(2*x^3-6*x^2)*log(2)^2*log(x-3)^2+(
4*(-2*x^3+12*x^2)*log(2)^2+2*(154*x^2-462*x)*log(2))*log(x-3)-24*x^2*log(2)^2+2*(-4*x^2+462*x)*log(2)+300*x-90
0)/(625*x^2-1875*x),x, algorithm="giac")
[Out]
4/625*x^2*log(2)^2*log(x - 3)^2 + 4/625*x^2*log(2)^2 - 12/25*x*log(2) + 4/625*(x*log(2)*log(x - 3) - x*log(2)
+ log(x))*log(9*x^2) - 4/625*(2*x^2*log(2)^2 - 75*x*log(2))*log(x - 3) - 4/625*log(x)^2 + 12/25*log(x)
________________________________________________________________________________________
maple [B] time = 0.18, size = 127, normalized size = 4.54
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*(2*x^2-6*x)*ln(2)*ln(x-3)+12*x*ln(2)+4*x-12)*ln(9*x^2)+4*(2*x^3-6*x^2)*ln(2)^2*ln(x-3)^2+(4*(-2*x^3+12
*x^2)*ln(2)^2+2*(154*x^2-462*x)*ln(2))*ln(x-3)-24*x^2*ln(2)^2+2*(-4*x^2+462*x)*ln(2)+300*x-900)/(625*x^2-1875*
x),x,method=_RETURNVERBOSE)
[Out]
4/625*x^2*ln(2)^2*ln(x-3)^2-8/625*ln(x-3)*ln(2)^2*x^2+4/625*x^2*ln(2)^2-108/625*ln(2)^2+8/625*ln(2)*ln(x-3)*x*
ln(3)+4/625*ln(2)*ln(x-3)*x*ln(x^2)-8/625*x*ln(2)*ln(3)-4/625*x*ln(2)*ln(x^2)+12/25*ln(2)*ln(x-3)*x+24/625*ln(
2)*ln(3)-12/25*x*ln(2)+924/625*ln(2)+12/25*ln(x)+8/625*ln(3)*ln(x)+1/625*ln(x^2)^2
________________________________________________________________________________________
maxima [B] time = 0.49, size = 319, normalized size = 11.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^2-6*x)*log(2)*log(x-3)+12*x*log(2)+4*x-12)*log(9*x^2)+4*(2*x^3-6*x^2)*log(2)^2*log(x-3)^2+(
4*(-2*x^3+12*x^2)*log(2)^2+2*(154*x^2-462*x)*log(2))*log(x-3)-24*x^2*log(2)^2+2*(-4*x^2+462*x)*log(2)+300*x-90
0)/(625*x^2-1875*x),x, algorithm="maxima")
[Out]
-4/625*(x^2 + 6*x + 18*log(x - 3))*log(2)^2*log(x - 3) + 48/625*(x + 3*log(x - 3))*log(2)^2*log(x - 3) - 8/625
*x*(log(3) - 2)*log(2) + 2/625*((2*log(x - 3)^2 - 2*log(x - 3) + 1)*(x - 3)^2 + 12*log(x - 3)^3 + 24*(log(x -
3)^2 - 2*log(x - 3) + 2)*(x - 3))*log(2)^2 - 24/625*(log(x - 3)^3 + (log(x - 3)^2 - 2*log(x - 3) + 2)*(x - 3))
*log(2)^2 + 2/625*(x^2 + 18*log(x - 3)^2 + 18*x + 54*log(x - 3))*log(2)^2 - 24/625*(3*log(x - 3)^2 + 2*x + 6*l
og(x - 3))*log(2)^2 - 24/625*(x + 3*log(x - 3))*log(2)^2 + 308/625*(x + 3*log(x - 3))*log(2)*log(x - 3) - 462/
625*log(2)*log(x - 3)^2 - 154/625*(3*log(x - 3)^2 + 2*x + 6*log(x - 3))*log(2) - 8/625*(x + 3*log(x - 3))*log(
2) + 8/625*(x*(log(3) - 1)*log(2) + x*log(2)*log(x) + 3*log(2))*log(x - 3) + 924/625*log(2)*log(x - 3) - 8/625
*(x*log(2) - log(3))*log(x) + 4/625*log(x)^2 + 12/25*log(x)
________________________________________________________________________________________
mupad [B] time = 4.59, size = 88, normalized size = 3.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((24*x^2*log(2)^2 - 300*x + log(x - 3)*(2*log(2)*(462*x - 154*x^2) - 4*log(2)^2*(12*x^2 - 2*x^3)) - 2*log(2
)*(462*x - 4*x^2) - log(9*x^2)*(4*x + 12*x*log(2) - 2*log(x - 3)*log(2)*(6*x - 2*x^2) - 12) + 4*log(x - 3)^2*l
og(2)^2*(6*x^2 - 2*x^3) + 900)/(1875*x - 625*x^2),x)
[Out]
(12*log(x))/25 + (4*x^2*log(2)^2)/625 + log(9*x^2)^2/625 - log(9*x^2)*((4*x*log(2))/625 - (4*x*log(x - 3)*log(
2))/625) - (12*x*log(2))/25 - log(x - 3)*((8*x^2*log(2)^2)/625 - (12*x*log(2))/25) + (4*x^2*log(x - 3)^2*log(2
)^2)/625
________________________________________________________________________________________
sympy [B] time = 0.79, size = 109, normalized size = 3.89
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x**2-6*x)*ln(2)*ln(x-3)+12*x*ln(2)+4*x-12)*ln(9*x**2)+4*(2*x**3-6*x**2)*ln(2)**2*ln(x-3)**2+(
4*(-2*x**3+12*x**2)*ln(2)**2+2*(154*x**2-462*x)*ln(2))*ln(x-3)-24*x**2*ln(2)**2+2*(-4*x**2+462*x)*ln(2)+300*x-
900)/(625*x**2-1875*x),x)
[Out]
4*x**2*log(2)**2*log(x - 3)**2/625 + 4*x**2*log(2)**2/625 - 12*x*log(2)/25 + (-8*x**2*log(2)**2/625 + 12*x*log
(2)/25)*log(x - 3) + (4*x*log(2)*log(x - 3)/625 - 4*x*log(2)/625)*log(9*x**2) + 12*log(x)/25 + log(9*x**2)**2/
625
________________________________________________________________________________________