Optimal. Leaf size=32 \[ \frac {e^7+\log \left (\frac {\log (x)}{x}\right )}{\left (x+x^2\right ) \left (-\frac {4}{\log (5)}+\log (-1+x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 50.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (4-4 x^2\right ) \log (5)+\left (-1+x^2\right ) \log ^2(5) \log (-1+x)+\left (\left (-4+4 x^2+e^7 \left (-4-4 x+8 x^2\right )\right ) \log (5)+e^7 \left (-x-x^2\right ) \log ^2(5)+\left (1-x^2+e^7 \left (1+x-2 x^2\right )\right ) \log ^2(5) \log (-1+x)\right ) \log (x)+\left (\left (-4-4 x+8 x^2\right ) \log (5)+\left (-x-x^2\right ) \log ^2(5)+\left (1+x-2 x^2\right ) \log ^2(5) \log (-1+x)\right ) \log (x) \log \left (\frac {\log (x)}{x}\right )}{\left (-16 x^2-16 x^3+16 x^4+16 x^5+\left (8 x^2+8 x^3-8 x^4-8 x^5\right ) \log (5) \log (-1+x)+\left (-x^2-x^3+x^4+x^5\right ) \log ^2(5) \log ^2(-1+x)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (5) \left (4 \left (-1+x^2\right )+\log (x) \left (4-4 x^2+e^7 \left (4+x^2 (-8+\log (5))+x (4+\log (5))\right )+\left (4+x^2 (-8+\log (5))+x (4+\log (5))\right ) \log \left (\frac {\log (x)}{x}\right )\right )+(-1+x) \log (5) \log (-1+x) \left (-1-x+\log (x) \left (1+e^7+x+2 e^7 x+(1+2 x) \log \left (\frac {\log (x)}{x}\right )\right )\right )\right )}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2 \log (x)} \, dx\\ &=\log (5) \int \frac {4 \left (-1+x^2\right )+\log (x) \left (4-4 x^2+e^7 \left (4+x^2 (-8+\log (5))+x (4+\log (5))\right )+\left (4+x^2 (-8+\log (5))+x (4+\log (5))\right ) \log \left (\frac {\log (x)}{x}\right )\right )+(-1+x) \log (5) \log (-1+x) \left (-1-x+\log (x) \left (1+e^7+x+2 e^7 x+(1+2 x) \log \left (\frac {\log (x)}{x}\right )\right )\right )}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2 \log (x)} \, dx\\ &=\log (5) \int \left (\frac {e^7 \left (4-x^2 (8-\log (5))+x (4+\log (5))\right )}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2}+\frac {4}{(-1+x) (1+x)^2 (-4+\log (5) \log (-1+x))^2}-\frac {4}{(-1+x) x^2 (1+x)^2 (-4+\log (5) \log (-1+x))^2}-\frac {\left (1+e^7\right ) \log (5) \log (-1+x)}{x^2 (1+x)^2 (-4+\log (5) \log (-1+x))^2}-\frac {\left (1+2 e^7\right ) \log (5) \log (-1+x)}{x (1+x)^2 (-4+\log (5) \log (-1+x))^2}-\frac {4}{x^2 (1+x) (-4+\log (5) \log (-1+x))^2 \log (x)}+\frac {\log (5) \log (-1+x)}{x^2 (1+x)^2 (-4+\log (5) \log (-1+x))^2 \log (x)}+\frac {\log (5) \log (-1+x)}{x (1+x)^2 (-4+\log (5) \log (-1+x))^2 \log (x)}+\frac {\left (4-8 x^2 \left (1-\frac {\log (5)}{8}\right )+4 x \left (1+\frac {\log (5)}{4}\right )-\log (5) \log (-1+x)-x \log (5) \log (-1+x)+2 x^2 \log (5) \log (-1+x)\right ) \log \left (\frac {\log (x)}{x}\right )}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2}\right ) \, dx\\ &=\log (5) \int \frac {\left (4-8 x^2 \left (1-\frac {\log (5)}{8}\right )+4 x \left (1+\frac {\log (5)}{4}\right )-\log (5) \log (-1+x)-x \log (5) \log (-1+x)+2 x^2 \log (5) \log (-1+x)\right ) \log \left (\frac {\log (x)}{x}\right )}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2} \, dx+(4 \log (5)) \int \frac {1}{(-1+x) (1+x)^2 (-4+\log (5) \log (-1+x))^2} \, dx-(4 \log (5)) \int \frac {1}{(-1+x) x^2 (1+x)^2 (-4+\log (5) \log (-1+x))^2} \, dx-(4 \log (5)) \int \frac {1}{x^2 (1+x) (-4+\log (5) \log (-1+x))^2 \log (x)} \, dx+\left (e^7 \log (5)\right ) \int \frac {4-x^2 (8-\log (5))+x (4+\log (5))}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2} \, dx+\log ^2(5) \int \frac {\log (-1+x)}{x^2 (1+x)^2 (-4+\log (5) \log (-1+x))^2 \log (x)} \, dx+\log ^2(5) \int \frac {\log (-1+x)}{x (1+x)^2 (-4+\log (5) \log (-1+x))^2 \log (x)} \, dx-\left (\left (1+e^7\right ) \log ^2(5)\right ) \int \frac {\log (-1+x)}{x^2 (1+x)^2 (-4+\log (5) \log (-1+x))^2} \, dx-\left (\left (1+2 e^7\right ) \log ^2(5)\right ) \int \frac {\log (-1+x)}{x (1+x)^2 (-4+\log (5) \log (-1+x))^2} \, dx\\ &=\log (5) \int \frac {\left (4+x^2 (-8+\log (5))+x (4+\log (5))+\left (-1-x+2 x^2\right ) \log (5) \log (-1+x)\right ) \log \left (\frac {\log (x)}{x}\right )}{(1-x) x^2 (1+x)^2 (4-\log (5) \log (-1+x))^2} \, dx-(4 \log (5)) \int \left (\frac {1}{4 (-1+x) (-4+\log (5) \log (-1+x))^2}-\frac {1}{x^2 (-4+\log (5) \log (-1+x))^2}+\frac {1}{x (-4+\log (5) \log (-1+x))^2}-\frac {1}{2 (1+x)^2 (-4+\log (5) \log (-1+x))^2}-\frac {5}{4 (1+x) (-4+\log (5) \log (-1+x))^2}\right ) \, dx+(4 \log (5)) \int \left (-\frac {1}{2 (1+x)^2 (-4+\log (5) \log (-1+x))^2}+\frac {1}{2 \left (-1+x^2\right ) (-4+\log (5) \log (-1+x))^2}\right ) \, dx-(4 \log (5)) \int \left (\frac {1}{x^2 (-4+\log (5) \log (-1+x))^2 \log (x)}-\frac {1}{x (-4+\log (5) \log (-1+x))^2 \log (x)}+\frac {1}{(1+x) (-4+\log (5) \log (-1+x))^2 \log (x)}\right ) \, dx+\left (e^7 \log (5)\right ) \int \left (\frac {4}{x^2 (4-\log (5) \log (-1+x))^2}-\frac {4}{(1+x)^2 (4-\log (5) \log (-1+x))^2}+\frac {\log (5)}{x (4-\log (5) \log (-1+x))^2}-\frac {x \log (5)}{\left (-1+x^2\right ) (4-\log (5) \log (-1+x))^2}\right ) \, dx+\log ^2(5) \int \left (\frac {\log (-1+x)}{x (-4+\log (5) \log (-1+x))^2 \log (x)}-\frac {\log (-1+x)}{(1+x)^2 (-4+\log (5) \log (-1+x))^2 \log (x)}-\frac {\log (-1+x)}{(1+x) (-4+\log (5) \log (-1+x))^2 \log (x)}\right ) \, dx+\log ^2(5) \int \left (\frac {\log (-1+x)}{x^2 (-4+\log (5) \log (-1+x))^2 \log (x)}-\frac {2 \log (-1+x)}{x (-4+\log (5) \log (-1+x))^2 \log (x)}+\frac {\log (-1+x)}{(1+x)^2 (-4+\log (5) \log (-1+x))^2 \log (x)}+\frac {2 \log (-1+x)}{(1+x) (-4+\log (5) \log (-1+x))^2 \log (x)}\right ) \, dx-\left (\left (1+e^7\right ) \log ^2(5)\right ) \int \left (\frac {4}{x^2 (1+x)^2 \log (5) (-4+\log (5) \log (-1+x))^2}+\frac {1}{x^2 (1+x)^2 \log (5) (-4+\log (5) \log (-1+x))}\right ) \, dx-\left (\left (1+2 e^7\right ) \log ^2(5)\right ) \int \left (\frac {4}{x (1+x)^2 \log (5) (-4+\log (5) \log (-1+x))^2}+\frac {1}{x (1+x)^2 \log (5) (-4+\log (5) \log (-1+x))}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 33, normalized size = 1.03 \begin {gather*} \frac {\log (5) \left (e^7+\log \left (\frac {\log (x)}{x}\right )\right )}{x (1+x) (-4+\log (5) \log (-1+x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 40, normalized size = 1.25 \begin {gather*} \frac {e^{7} \log \relax (5) + \log \relax (5) \log \left (\frac {\log \relax (x)}{x}\right )}{{\left (x^{2} + x\right )} \log \relax (5) \log \left (x - 1\right ) - 4 \, x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 48, normalized size = 1.50 \begin {gather*} \frac {e^{7} \log \relax (5) - \log \relax (5) \log \relax (x) + \log \relax (5) \log \left (\log \relax (x)\right )}{x^{2} \log \relax (5) \log \left (x - 1\right ) + x \log \relax (5) \log \left (x - 1\right ) - 4 \, x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 143, normalized size = 4.47
method | result | size |
risch | \(\frac {\ln \relax (5) \ln \left (\ln \relax (x )\right )}{\left (x +1\right ) x \left (\ln \relax (5) \ln \left (x -1\right )-4\right )}+\frac {\left (-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{3}+2 \,{\mathrm e}^{7}-2 \ln \relax (x )\right ) \ln \relax (5)}{2 \left (x +1\right ) x \left (\ln \relax (5) \ln \left (x -1\right )-4\right )}\) | \(143\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 48, normalized size = 1.50 \begin {gather*} -\frac {e^{7} \log \relax (5) - \log \relax (5) \log \relax (x) + \log \relax (5) \log \left (\log \relax (x)\right )}{4 \, x^{2} - {\left (x^{2} \log \relax (5) + x \log \relax (5)\right )} \log \left (x - 1\right ) + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 32, normalized size = 1.00 \begin {gather*} \frac {\ln \relax (5)\,\left ({\mathrm {e}}^7+\ln \left (\frac {\ln \relax (x)}{x}\right )\right )}{x\,\left (\ln \left (x-1\right )\,\ln \relax (5)-4\right )\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.95, size = 71, normalized size = 2.22 \begin {gather*} \frac {\log {\relax (5 )} \log {\left (\frac {\log {\relax (x )}}{x} \right )}}{x^{2} \log {\relax (5 )} \log {\left (x - 1 \right )} - 4 x^{2} + x \log {\relax (5 )} \log {\left (x - 1 \right )} - 4 x} + \frac {e^{7} \log {\relax (5 )}}{- 4 x^{2} - 4 x + \left (x^{2} \log {\relax (5 )} + x \log {\relax (5 )}\right ) \log {\left (x - 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________