Optimal. Leaf size=20 \[ \left (e^{1-4 x+\log ^2(\log (3))}-x\right ) x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 22, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} x^2 e^{-4 x+1+\log ^2(\log (3))}-x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x^3+\int e^{1-4 x+\log ^2(\log (3))} \left (2 x-4 x^2\right ) \, dx\\ &=-x^3+\int e^{1-4 x+\log ^2(\log (3))} (2-4 x) x \, dx\\ &=-x^3+\int \left (2 e^{1-4 x+\log ^2(\log (3))} x-4 e^{1-4 x+\log ^2(\log (3))} x^2\right ) \, dx\\ &=-x^3+2 \int e^{1-4 x+\log ^2(\log (3))} x \, dx-4 \int e^{1-4 x+\log ^2(\log (3))} x^2 \, dx\\ &=-\frac {1}{2} e^{1-4 x+\log ^2(\log (3))} x+e^{1-4 x+\log ^2(\log (3))} x^2-x^3+\frac {1}{2} \int e^{1-4 x+\log ^2(\log (3))} \, dx-2 \int e^{1-4 x+\log ^2(\log (3))} x \, dx\\ &=-\frac {1}{8} e^{1-4 x+\log ^2(\log (3))}+e^{1-4 x+\log ^2(\log (3))} x^2-x^3-\frac {1}{2} \int e^{1-4 x+\log ^2(\log (3))} \, dx\\ &=e^{1-4 x+\log ^2(\log (3))} x^2-x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 20, normalized size = 1.00 \begin {gather*} \left (e^{1-4 x+\log ^2(\log (3))}-x\right ) x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 21, normalized size = 1.05 \begin {gather*} -x^{3} + x^{2} e^{\left (\log \left (\log \relax (3)\right )^{2} - 4 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 1.05 \begin {gather*} -x^{3} + x^{2} e^{\left (\log \left (\log \relax (3)\right )^{2} - 4 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.10
method | result | size |
norman | \({\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} x^{2}-x^{3}\) | \(22\) |
risch | \({\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} x^{2}-x^{3}\) | \(22\) |
default | \(-\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right ) \ln \left (\ln \relax (3)\right )^{2}}{8}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \ln \left (\ln \relax (3)\right )^{2}}{8}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )^{2}}{16}-\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )}{8}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1}}{16}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \ln \left (\ln \relax (3)\right )^{4}}{16}-x^{3}\) | \(132\) |
derivativedivides | \(\frac {\left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )^{3}}{64}-\frac {3 \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )^{2} \ln \left (\ln \relax (3)\right )^{2}}{64}-\frac {3 \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )^{2}}{64}+\frac {3 \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right ) \ln \left (\ln \relax (3)\right )^{4}}{64}+\frac {3 \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right ) \ln \left (\ln \relax (3)\right )^{2}}{32}-\frac {3 x}{16}+\frac {1}{32}-\frac {\ln \left (\ln \relax (3)\right )^{6}}{64}-\frac {3 \ln \left (\ln \relax (3)\right )^{4}}{64}-\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right ) \ln \left (\ln \relax (3)\right )^{2}}{8}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \ln \left (\ln \relax (3)\right )^{2}}{8}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )^{2}}{16}-\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \left (\ln \left (\ln \relax (3)\right )^{2}-4 x +1\right )}{8}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1}}{16}+\frac {{\mathrm e}^{\ln \left (\ln \relax (3)\right )^{2}-4 x +1} \ln \left (\ln \relax (3)\right )^{4}}{16}\) | \(226\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 71, normalized size = 3.55 \begin {gather*} -x^{3} + \frac {1}{8} \, {\left (8 \, x^{2} e^{\left (\log \left (\log \relax (3)\right )^{2} + 1\right )} + 4 \, x e^{\left (\log \left (\log \relax (3)\right )^{2} + 1\right )} + e^{\left (\log \left (\log \relax (3)\right )^{2} + 1\right )}\right )} e^{\left (-4 \, x\right )} - \frac {1}{8} \, {\left (4 \, x e^{\left (\log \left (\log \relax (3)\right )^{2} + 1\right )} + e^{\left (\log \left (\log \relax (3)\right )^{2} + 1\right )}\right )} e^{\left (-4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 22, normalized size = 1.10 \begin {gather*} x^2\,{\mathrm {e}}^{-4\,x}\,\mathrm {e}\,{\mathrm {e}}^{{\ln \left (\ln \relax (3)\right )}^2}-x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 0.95 \begin {gather*} - x^{3} + x^{2} e^{- 4 x + \log {\left (\log {\relax (3 )} \right )}^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________