3.69.95 (3x2+e14x+log2(log(3))(2x4x2))dx

Optimal. Leaf size=20 (e14x+log2(log(3))x)x2

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 22, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 4, integrand size = 28, number of rulesintegrand size = 0.143, Rules used = {1593, 2196, 2176, 2194} x2e4x+1+log2(log(3))x3

Antiderivative was successfully verified.

[In]

Int[-3*x^2 + E^(1 - 4*x + Log[Log[3]]^2)*(2*x - 4*x^2),x]

[Out]

E^(1 - 4*x + Log[Log[3]]^2)*x^2 - x^3

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=x3+e14x+log2(log(3))(2x4x2)dx=x3+e14x+log2(log(3))(24x)xdx=x3+(2e14x+log2(log(3))x4e14x+log2(log(3))x2)dx=x3+2e14x+log2(log(3))xdx4e14x+log2(log(3))x2dx=12e14x+log2(log(3))x+e14x+log2(log(3))x2x3+12e14x+log2(log(3))dx2e14x+log2(log(3))xdx=18e14x+log2(log(3))+e14x+log2(log(3))x2x312e14x+log2(log(3))dx=e14x+log2(log(3))x2x3

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 20, normalized size = 1.00 (e14x+log2(log(3))x)x2

Antiderivative was successfully verified.

[In]

Integrate[-3*x^2 + E^(1 - 4*x + Log[Log[3]]^2)*(2*x - 4*x^2),x]

[Out]

(E^(1 - 4*x + Log[Log[3]]^2) - x)*x^2

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 21, normalized size = 1.05 x3+x2e(log(log(3))24x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^2+2*x)*exp(log(log(3))^2-4*x+1)-3*x^2,x, algorithm="fricas")

[Out]

-x^3 + x^2*e^(log(log(3))^2 - 4*x + 1)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 21, normalized size = 1.05 x3+x2e(log(log(3))24x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^2+2*x)*exp(log(log(3))^2-4*x+1)-3*x^2,x, algorithm="giac")

[Out]

-x^3 + x^2*e^(log(log(3))^2 - 4*x + 1)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 22, normalized size = 1.10




method result size



norman eln(ln(3))24x+1x2x3 22
risch eln(ln(3))24x+1x2x3 22
default eln(ln(3))24x+1(ln(ln(3))24x+1)ln(ln(3))28+eln(ln(3))24x+1ln(ln(3))28+eln(ln(3))24x+1(ln(ln(3))24x+1)216eln(ln(3))24x+1(ln(ln(3))24x+1)8+eln(ln(3))24x+116+eln(ln(3))24x+1ln(ln(3))416x3 132
derivativedivides (ln(ln(3))24x+1)3643(ln(ln(3))24x+1)2ln(ln(3))2643(ln(ln(3))24x+1)264+3(ln(ln(3))24x+1)ln(ln(3))464+3(ln(ln(3))24x+1)ln(ln(3))2323x16+132ln(ln(3))6643ln(ln(3))464eln(ln(3))24x+1(ln(ln(3))24x+1)ln(ln(3))28+eln(ln(3))24x+1ln(ln(3))28+eln(ln(3))24x+1(ln(ln(3))24x+1)216eln(ln(3))24x+1(ln(ln(3))24x+1)8+eln(ln(3))24x+116+eln(ln(3))24x+1ln(ln(3))416 226



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-4*x^2+2*x)*exp(ln(ln(3))^2-4*x+1)-3*x^2,x,method=_RETURNVERBOSE)

[Out]

exp(ln(ln(3))^2-4*x+1)*x^2-x^3

________________________________________________________________________________________

maxima [B]  time = 0.45, size = 71, normalized size = 3.55 x3+18(8x2e(log(log(3))2+1)+4xe(log(log(3))2+1)+e(log(log(3))2+1))e(4x)18(4xe(log(log(3))2+1)+e(log(log(3))2+1))e(4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^2+2*x)*exp(log(log(3))^2-4*x+1)-3*x^2,x, algorithm="maxima")

[Out]

-x^3 + 1/8*(8*x^2*e^(log(log(3))^2 + 1) + 4*x*e^(log(log(3))^2 + 1) + e^(log(log(3))^2 + 1))*e^(-4*x) - 1/8*(4
*x*e^(log(log(3))^2 + 1) + e^(log(log(3))^2 + 1))*e^(-4*x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 22, normalized size = 1.10 x2e4xeeln(ln(3))2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(log(log(3))^2 - 4*x + 1)*(2*x - 4*x^2) - 3*x^2,x)

[Out]

x^2*exp(-4*x)*exp(1)*exp(log(log(3))^2) - x^3

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 19, normalized size = 0.95 x3+x2e4x+log(log(3))2+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x**2+2*x)*exp(ln(ln(3))**2-4*x+1)-3*x**2,x)

[Out]

-x**3 + x**2*exp(-4*x + log(log(3))**2 + 1)

________________________________________________________________________________________