3.69.100 90x218x32x42x3log(x)+(10x2+18x3+4x4+(30x2+6x3)log(x))log(5+x)45+9x+(30x6x2+(306x)log(x))log(5+x)+(5x2+x3+(10x+2x2)log(x)+(5+x)log2(x))log2(5+x)dx

Optimal. Leaf size=20 27+2x33+(x+log(x))log(5+x)

________________________________________________________________________________________

Rubi [F]  time = 14.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 90x218x32x42x3log(x)+(10x2+18x3+4x4+(30x2+6x3)log(x))log(5+x)45+9x+(30x6x2+(306x)log(x))log(5+x)+(5x2+x3+(10x+2x2)log(x)+(5+x)log2(x))log2(5+x)dx

Verification is not applicable to the result.

[In]

Int[(-90*x^2 - 18*x^3 - 2*x^4 - 2*x^3*Log[x] + (-10*x^2 + 18*x^3 + 4*x^4 + (30*x^2 + 6*x^3)*Log[x])*Log[5 + x]
)/(45 + 9*x + (-30*x - 6*x^2 + (-30 - 6*x)*Log[x])*Log[5 + x] + (5*x^2 + x^3 + (10*x + 2*x^2)*Log[x] + (5 + x)
*Log[x]^2)*Log[5 + x]^2),x]

[Out]

-1250*Defer[Int][1/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 250*Defer[Int][x/((x + Log[x
])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 56*Defer[Int][x^2/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x
]*Log[5 + x])^2), x] + 4*Defer[Int][x^3/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 2*Defer
[Int][x^4/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 6250*Defer[Int][1/((5 + x)*(x + Log[x
])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 500*Defer[Int][Log[x]/((x + Log[x])*(-3 + x*Log[5 + x] + L
og[x]*Log[5 + x])^2), x] - 100*Defer[Int][(x*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2),
 x] + 20*Defer[Int][(x^2*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 4*Defer[Int][(
x^3*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 2500*Defer[Int][Log[x]/((5 + x)*(x
+ Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 50*Defer[Int][Log[x]^2/((x + Log[x])*(-3 + x*Log[5
+ x] + Log[x]*Log[5 + x])^2), x] + 10*Defer[Int][(x*Log[x]^2)/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5
+ x])^2), x] - 2*Defer[Int][(x^2*Log[x]^2)/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 250*
Defer[Int][Log[x]^2/((5 + x)*(x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 2*Defer[Int][x^2/((
x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])), x] + 4*Defer[Int][x^3/((x + Log[x])*(-3 + x*Log[5 + x] +
 Log[x]*Log[5 + x])), x] + 6*Defer[Int][(x^2*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])), x
]

Rubi steps

integral=2x2(459xx2+(5+9x+2x2)log(5+x)+log(x)(x+3(5+x)log(5+x)))(5+x)(3(x+log(x))log(5+x))2dx=2x2(459xx2+(5+9x+2x2)log(5+x)+log(x)(x+3(5+x)log(5+x)))(5+x)(3(x+log(x))log(5+x))2dx=2(x2(15+18x+3x2+x3+2x2log(x)+xlog2(x))(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+x2(1+2x+3log(x))(x+log(x))(3+xlog(5+x)+log(x)log(5+x)))dx=(2x2(15+18x+3x2+x3+2x2log(x)+xlog2(x))(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx)+2x2(1+2x+3log(x))(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx=(2(5(15+18x+3x2+x3+2x2log(x)+xlog2(x))(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+x(15+18x+3x2+x3+2x2log(x)+xlog2(x))(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+25(15+18x+3x2+x3+2x2log(x)+xlog2(x))(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2)dx)+2(x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))+2x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))+3x2log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x)))dx=(2x(15+18x+3x2+x3+2x2log(x)+xlog2(x))(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx)2x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx+4x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx+6x2log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx+1015+18x+3x2+x3+2x2log(x)+xlog2(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx5015+18x+3x2+x3+2x2log(x)+xlog2(x)(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx=(2x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx)2(15x(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+18x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+3x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+x4(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+2x3log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+x2log2(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2)dx+4x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx+6x2log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx+10(15(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+18x(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+3x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+2x2log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+xlog2(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2)dx50(15(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+18x(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+3x2(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+x3(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+2x2log(x)(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2+xlog2(x)(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2)dx=(2x4(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx)2x2log2(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx2x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx4x3log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+4x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx6x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+6x2log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))dx+10x3(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+10xlog2(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+20x2log(x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx30x(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+30x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx36x2(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx50x3(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx50xlog2(x)(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx100x2log(x)(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+1501(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx150x2(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx+180x(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx7501(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx900x(5+x)(x+log(x))(3+xlog(5+x)+log(x)log(5+x))2dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 2.38, size = 18, normalized size = 0.90 2x33+(x+log(x))log(5+x)

Antiderivative was successfully verified.

[In]

Integrate[(-90*x^2 - 18*x^3 - 2*x^4 - 2*x^3*Log[x] + (-10*x^2 + 18*x^3 + 4*x^4 + (30*x^2 + 6*x^3)*Log[x])*Log[
5 + x])/(45 + 9*x + (-30*x - 6*x^2 + (-30 - 6*x)*Log[x])*Log[5 + x] + (5*x^2 + x^3 + (10*x + 2*x^2)*Log[x] + (
5 + x)*Log[x]^2)*Log[5 + x]^2),x]

[Out]

(2*x^3)/(-3 + (x + Log[x])*Log[5 + x])

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 18, normalized size = 0.90 2x3(x+log(x))log(x+5)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x^3+30*x^2)*log(x)+4*x^4+18*x^3-10*x^2)*log(5+x)-2*x^3*log(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*log(
x)^2+(2*x^2+10*x)*log(x)+x^3+5*x^2)*log(5+x)^2+((-6*x-30)*log(x)-6*x^2-30*x)*log(5+x)+9*x+45),x, algorithm="fr
icas")

[Out]

2*x^3/((x + log(x))*log(x + 5) - 3)

________________________________________________________________________________________

giac [A]  time = 0.30, size = 22, normalized size = 1.10 2x3xlog(x+5)+log(x+5)log(x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x^3+30*x^2)*log(x)+4*x^4+18*x^3-10*x^2)*log(5+x)-2*x^3*log(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*log(
x)^2+(2*x^2+10*x)*log(x)+x^3+5*x^2)*log(5+x)^2+((-6*x-30)*log(x)-6*x^2-30*x)*log(5+x)+9*x+45),x, algorithm="gi
ac")

[Out]

2*x^3/(x*log(x + 5) + log(x + 5)*log(x) - 3)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 23, normalized size = 1.15




method result size



risch 2x3ln(x)ln(5+x)+xln(5+x)3 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((6*x^3+30*x^2)*ln(x)+4*x^4+18*x^3-10*x^2)*ln(5+x)-2*x^3*ln(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*ln(x)^2+(2*x^
2+10*x)*ln(x)+x^3+5*x^2)*ln(5+x)^2+((-6*x-30)*ln(x)-6*x^2-30*x)*ln(5+x)+9*x+45),x,method=_RETURNVERBOSE)

[Out]

2*x^3/(ln(x)*ln(5+x)+x*ln(5+x)-3)

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 18, normalized size = 0.90 2x3(x+log(x))log(x+5)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x^3+30*x^2)*log(x)+4*x^4+18*x^3-10*x^2)*log(5+x)-2*x^3*log(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*log(
x)^2+(2*x^2+10*x)*log(x)+x^3+5*x^2)*log(5+x)^2+((-6*x-30)*log(x)-6*x^2-30*x)*log(5+x)+9*x+45),x, algorithm="ma
xima")

[Out]

2*x^3/((x + log(x))*log(x + 5) - 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 2x3ln(x)ln(x+5)(ln(x)(6x3+30x2)10x2+18x3+4x4)+90x2+18x3+2x4(ln(x)2(x+5)+ln(x)(2x2+10x)+5x2+x3)ln(x+5)2+(30xln(x)(6x+30)6x2)ln(x+5)+9x+45dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x^3*log(x) - log(x + 5)*(log(x)*(30*x^2 + 6*x^3) - 10*x^2 + 18*x^3 + 4*x^4) + 90*x^2 + 18*x^3 + 2*x^4)
/(9*x - log(x + 5)*(30*x + log(x)*(6*x + 30) + 6*x^2) + log(x + 5)^2*(log(x)^2*(x + 5) + log(x)*(10*x + 2*x^2)
 + 5*x^2 + x^3) + 45),x)

[Out]

int(-(2*x^3*log(x) - log(x + 5)*(log(x)*(30*x^2 + 6*x^3) - 10*x^2 + 18*x^3 + 4*x^4) + 90*x^2 + 18*x^3 + 2*x^4)
/(9*x - log(x + 5)*(30*x + log(x)*(6*x + 30) + 6*x^2) + log(x + 5)^2*(log(x)^2*(x + 5) + log(x)*(10*x + 2*x^2)
 + 5*x^2 + x^3) + 45), x)

________________________________________________________________________________________

sympy [A]  time = 0.37, size = 15, normalized size = 0.75 2x3(x+log(x))log(x+5)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x**3+30*x**2)*ln(x)+4*x**4+18*x**3-10*x**2)*ln(5+x)-2*x**3*ln(x)-2*x**4-18*x**3-90*x**2)/(((5+x
)*ln(x)**2+(2*x**2+10*x)*ln(x)+x**3+5*x**2)*ln(5+x)**2+((-6*x-30)*ln(x)-6*x**2-30*x)*ln(5+x)+9*x+45),x)

[Out]

2*x**3/((x + log(x))*log(x + 5) - 3)

________________________________________________________________________________________