Optimal. Leaf size=20 \[ 27+\frac {2 x^3}{-3+(x+\log (x)) \log (5+x)} \]
________________________________________________________________________________________
Rubi [F] time = 14.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-90 x^2-18 x^3-2 x^4-2 x^3 \log (x)+\left (-10 x^2+18 x^3+4 x^4+\left (30 x^2+6 x^3\right ) \log (x)\right ) \log (5+x)}{45+9 x+\left (-30 x-6 x^2+(-30-6 x) \log (x)\right ) \log (5+x)+\left (5 x^2+x^3+\left (10 x+2 x^2\right ) \log (x)+(5+x) \log ^2(x)\right ) \log ^2(5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^2 \left (-45-9 x-x^2+\left (-5+9 x+2 x^2\right ) \log (5+x)+\log (x) (-x+3 (5+x) \log (5+x))\right )}{(5+x) (3-(x+\log (x)) \log (5+x))^2} \, dx\\ &=2 \int \frac {x^2 \left (-45-9 x-x^2+\left (-5+9 x+2 x^2\right ) \log (5+x)+\log (x) (-x+3 (5+x) \log (5+x))\right )}{(5+x) (3-(x+\log (x)) \log (5+x))^2} \, dx\\ &=2 \int \left (-\frac {x^2 \left (15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)\right )}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x^2 (-1+2 x+3 \log (x))}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))}\right ) \, dx\\ &=-\left (2 \int \frac {x^2 \left (15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)\right )}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx\right )+2 \int \frac {x^2 (-1+2 x+3 \log (x))}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx\\ &=-\left (2 \int \left (-\frac {5 \left (15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)\right )}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x \left (15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)\right )}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {25 \left (15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)\right )}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}\right ) \, dx\right )+2 \int \left (-\frac {x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))}+\frac {2 x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))}+\frac {3 x^2 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))}\right ) \, dx\\ &=-\left (2 \int \frac {x \left (15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)\right )}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx\right )-2 \int \frac {x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx+4 \int \frac {x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx+6 \int \frac {x^2 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx+10 \int \frac {15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-50 \int \frac {15+18 x+3 x^2+x^3+2 x^2 \log (x)+x \log ^2(x)}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx\\ &=-\left (2 \int \frac {x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx\right )-2 \int \left (\frac {15 x}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {18 x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {3 x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x^4}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {2 x^3 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x^2 \log ^2(x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}\right ) \, dx+4 \int \frac {x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx+6 \int \frac {x^2 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx+10 \int \left (\frac {15}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {18 x}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {3 x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {2 x^2 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x \log ^2(x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}\right ) \, dx-50 \int \left (\frac {15}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {18 x}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {3 x^2}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x^3}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {2 x^2 \log (x)}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}+\frac {x \log ^2(x)}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^4}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx\right )-2 \int \frac {x^2 \log ^2(x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-2 \int \frac {x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx-4 \int \frac {x^3 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+4 \int \frac {x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx-6 \int \frac {x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+6 \int \frac {x^2 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))} \, dx+10 \int \frac {x^3}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+10 \int \frac {x \log ^2(x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+20 \int \frac {x^2 \log (x)}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-30 \int \frac {x}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+30 \int \frac {x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-36 \int \frac {x^2}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-50 \int \frac {x^3}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-50 \int \frac {x \log ^2(x)}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-100 \int \frac {x^2 \log (x)}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+150 \int \frac {1}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-150 \int \frac {x^2}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx+180 \int \frac {x}{(x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-750 \int \frac {1}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx-900 \int \frac {x}{(5+x) (x+\log (x)) (-3+x \log (5+x)+\log (x) \log (5+x))^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.38, size = 18, normalized size = 0.90 \begin {gather*} \frac {2 x^3}{-3+(x+\log (x)) \log (5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 18, normalized size = 0.90 \begin {gather*} \frac {2 \, x^{3}}{{\left (x + \log \relax (x)\right )} \log \left (x + 5\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 22, normalized size = 1.10 \begin {gather*} \frac {2 \, x^{3}}{x \log \left (x + 5\right ) + \log \left (x + 5\right ) \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.15
method | result | size |
risch | \(\frac {2 x^{3}}{\ln \relax (x ) \ln \left (5+x \right )+x \ln \left (5+x \right )-3}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 18, normalized size = 0.90 \begin {gather*} \frac {2 \, x^{3}}{{\left (x + \log \relax (x)\right )} \log \left (x + 5\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {2\,x^3\,\ln \relax (x)-\ln \left (x+5\right )\,\left (\ln \relax (x)\,\left (6\,x^3+30\,x^2\right )-10\,x^2+18\,x^3+4\,x^4\right )+90\,x^2+18\,x^3+2\,x^4}{\left ({\ln \relax (x)}^2\,\left (x+5\right )+\ln \relax (x)\,\left (2\,x^2+10\,x\right )+5\,x^2+x^3\right )\,{\ln \left (x+5\right )}^2+\left (-30\,x-\ln \relax (x)\,\left (6\,x+30\right )-6\,x^2\right )\,\ln \left (x+5\right )+9\,x+45} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 15, normalized size = 0.75 \begin {gather*} \frac {2 x^{3}}{\left (x + \log {\relax (x )}\right ) \log {\left (x + 5 \right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________