3.69.100
Optimal. Leaf size=20
________________________________________________________________________________________
Rubi [F] time = 14.52, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-90*x^2 - 18*x^3 - 2*x^4 - 2*x^3*Log[x] + (-10*x^2 + 18*x^3 + 4*x^4 + (30*x^2 + 6*x^3)*Log[x])*Log[5 + x]
)/(45 + 9*x + (-30*x - 6*x^2 + (-30 - 6*x)*Log[x])*Log[5 + x] + (5*x^2 + x^3 + (10*x + 2*x^2)*Log[x] + (5 + x)
*Log[x]^2)*Log[5 + x]^2),x]
[Out]
-1250*Defer[Int][1/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 250*Defer[Int][x/((x + Log[x
])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 56*Defer[Int][x^2/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x
]*Log[5 + x])^2), x] + 4*Defer[Int][x^3/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 2*Defer
[Int][x^4/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 6250*Defer[Int][1/((5 + x)*(x + Log[x
])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 500*Defer[Int][Log[x]/((x + Log[x])*(-3 + x*Log[5 + x] + L
og[x]*Log[5 + x])^2), x] - 100*Defer[Int][(x*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2),
x] + 20*Defer[Int][(x^2*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 4*Defer[Int][(
x^3*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 2500*Defer[Int][Log[x]/((5 + x)*(x
+ Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 50*Defer[Int][Log[x]^2/((x + Log[x])*(-3 + x*Log[5
+ x] + Log[x]*Log[5 + x])^2), x] + 10*Defer[Int][(x*Log[x]^2)/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5
+ x])^2), x] - 2*Defer[Int][(x^2*Log[x]^2)/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] + 250*
Defer[Int][Log[x]^2/((5 + x)*(x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])^2), x] - 2*Defer[Int][x^2/((
x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])), x] + 4*Defer[Int][x^3/((x + Log[x])*(-3 + x*Log[5 + x] +
Log[x]*Log[5 + x])), x] + 6*Defer[Int][(x^2*Log[x])/((x + Log[x])*(-3 + x*Log[5 + x] + Log[x]*Log[5 + x])), x
]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 2.38, size = 18, normalized size = 0.90
Antiderivative was successfully verified.
[In]
Integrate[(-90*x^2 - 18*x^3 - 2*x^4 - 2*x^3*Log[x] + (-10*x^2 + 18*x^3 + 4*x^4 + (30*x^2 + 6*x^3)*Log[x])*Log[
5 + x])/(45 + 9*x + (-30*x - 6*x^2 + (-30 - 6*x)*Log[x])*Log[5 + x] + (5*x^2 + x^3 + (10*x + 2*x^2)*Log[x] + (
5 + x)*Log[x]^2)*Log[5 + x]^2),x]
[Out]
(2*x^3)/(-3 + (x + Log[x])*Log[5 + x])
________________________________________________________________________________________
fricas [A] time = 0.78, size = 18, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x^3+30*x^2)*log(x)+4*x^4+18*x^3-10*x^2)*log(5+x)-2*x^3*log(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*log(
x)^2+(2*x^2+10*x)*log(x)+x^3+5*x^2)*log(5+x)^2+((-6*x-30)*log(x)-6*x^2-30*x)*log(5+x)+9*x+45),x, algorithm="fr
icas")
[Out]
2*x^3/((x + log(x))*log(x + 5) - 3)
________________________________________________________________________________________
giac [A] time = 0.30, size = 22, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x^3+30*x^2)*log(x)+4*x^4+18*x^3-10*x^2)*log(5+x)-2*x^3*log(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*log(
x)^2+(2*x^2+10*x)*log(x)+x^3+5*x^2)*log(5+x)^2+((-6*x-30)*log(x)-6*x^2-30*x)*log(5+x)+9*x+45),x, algorithm="gi
ac")
[Out]
2*x^3/(x*log(x + 5) + log(x + 5)*log(x) - 3)
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((6*x^3+30*x^2)*ln(x)+4*x^4+18*x^3-10*x^2)*ln(5+x)-2*x^3*ln(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*ln(x)^2+(2*x^
2+10*x)*ln(x)+x^3+5*x^2)*ln(5+x)^2+((-6*x-30)*ln(x)-6*x^2-30*x)*ln(5+x)+9*x+45),x,method=_RETURNVERBOSE)
[Out]
2*x^3/(ln(x)*ln(5+x)+x*ln(5+x)-3)
________________________________________________________________________________________
maxima [A] time = 0.47, size = 18, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x^3+30*x^2)*log(x)+4*x^4+18*x^3-10*x^2)*log(5+x)-2*x^3*log(x)-2*x^4-18*x^3-90*x^2)/(((5+x)*log(
x)^2+(2*x^2+10*x)*log(x)+x^3+5*x^2)*log(5+x)^2+((-6*x-30)*log(x)-6*x^2-30*x)*log(5+x)+9*x+45),x, algorithm="ma
xima")
[Out]
2*x^3/((x + log(x))*log(x + 5) - 3)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(2*x^3*log(x) - log(x + 5)*(log(x)*(30*x^2 + 6*x^3) - 10*x^2 + 18*x^3 + 4*x^4) + 90*x^2 + 18*x^3 + 2*x^4)
/(9*x - log(x + 5)*(30*x + log(x)*(6*x + 30) + 6*x^2) + log(x + 5)^2*(log(x)^2*(x + 5) + log(x)*(10*x + 2*x^2)
+ 5*x^2 + x^3) + 45),x)
[Out]
int(-(2*x^3*log(x) - log(x + 5)*(log(x)*(30*x^2 + 6*x^3) - 10*x^2 + 18*x^3 + 4*x^4) + 90*x^2 + 18*x^3 + 2*x^4)
/(9*x - log(x + 5)*(30*x + log(x)*(6*x + 30) + 6*x^2) + log(x + 5)^2*(log(x)^2*(x + 5) + log(x)*(10*x + 2*x^2)
+ 5*x^2 + x^3) + 45), x)
________________________________________________________________________________________
sympy [A] time = 0.37, size = 15, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x**3+30*x**2)*ln(x)+4*x**4+18*x**3-10*x**2)*ln(5+x)-2*x**3*ln(x)-2*x**4-18*x**3-90*x**2)/(((5+x
)*ln(x)**2+(2*x**2+10*x)*ln(x)+x**3+5*x**2)*ln(5+x)**2+((-6*x-30)*ln(x)-6*x**2-30*x)*ln(5+x)+9*x+45),x)
[Out]
2*x**3/((x + log(x))*log(x + 5) - 3)
________________________________________________________________________________________