Optimal. Leaf size=36 \[ 1-\frac {5-x}{x}+x^2+x \left (\frac {1}{4}+\log ^2\left (\log \left (\frac {2}{x}-x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-40-2 x^2+4 x^3+x^5+8 x^6\right ) \log \left (\frac {2-x^3}{x}\right )+\left (16 x^2+16 x^5\right ) \log \left (\log \left (\frac {2-x^3}{x}\right )\right )+\left (-8 x^2+4 x^5\right ) \log \left (\frac {2-x^3}{x}\right ) \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (-8 x^2+4 x^5\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-40-2 x^2+4 x^3+x^5+8 x^6\right ) \log \left (\frac {2-x^3}{x}\right )+\left (16 x^2+16 x^5\right ) \log \left (\log \left (\frac {2-x^3}{x}\right )\right )+\left (-8 x^2+4 x^5\right ) \log \left (\frac {2-x^3}{x}\right ) \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right )}{x^2 \left (-8+4 x^3\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx\\ &=\int \left (\frac {1}{4}+\frac {5}{x^2}+2 x+\frac {4 \left (1+x^3\right ) \log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (-2+x^3\right ) \log \left (\frac {2-x^3}{x}\right )}+\log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right )\right ) \, dx\\ &=-\frac {5}{x}+\frac {x}{4}+x^2+4 \int \frac {\left (1+x^3\right ) \log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (-2+x^3\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx+\int \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right ) \, dx\\ &=-\frac {5}{x}+\frac {x}{4}+x^2+4 \int \left (\frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\log \left (\frac {2-x^3}{x}\right )}+\frac {3 \log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (-2+x^3\right ) \log \left (\frac {2-x^3}{x}\right )}\right ) \, dx+\int \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right ) \, dx\\ &=-\frac {5}{x}+\frac {x}{4}+x^2+4 \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\log \left (\frac {2-x^3}{x}\right )} \, dx+12 \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (-2+x^3\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx+\int \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right ) \, dx\\ &=-\frac {5}{x}+\frac {x}{4}+x^2+4 \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\log \left (\frac {2-x^3}{x}\right )} \, dx+12 \int \left (-\frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{3\ 2^{2/3} \left (\sqrt [3]{2}-x\right ) \log \left (\frac {2-x^3}{x}\right )}-\frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{3\ 2^{2/3} \left (\sqrt [3]{2}+\sqrt [3]{-1} x\right ) \log \left (\frac {2-x^3}{x}\right )}-\frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{3\ 2^{2/3} \left (\sqrt [3]{2}-(-1)^{2/3} x\right ) \log \left (\frac {2-x^3}{x}\right )}\right ) \, dx+\int \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right ) \, dx\\ &=-\frac {5}{x}+\frac {x}{4}+x^2+4 \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\log \left (\frac {2-x^3}{x}\right )} \, dx-\left (2 \sqrt [3]{2}\right ) \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (\sqrt [3]{2}-x\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx-\left (2 \sqrt [3]{2}\right ) \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (\sqrt [3]{2}+\sqrt [3]{-1} x\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx-\left (2 \sqrt [3]{2}\right ) \int \frac {\log \left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (\sqrt [3]{2}-(-1)^{2/3} x\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx+\int \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.42, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (-40-2 x^2+4 x^3+x^5+8 x^6\right ) \log \left (\frac {2-x^3}{x}\right )+\left (16 x^2+16 x^5\right ) \log \left (\log \left (\frac {2-x^3}{x}\right )\right )+\left (-8 x^2+4 x^5\right ) \log \left (\frac {2-x^3}{x}\right ) \log ^2\left (\log \left (\frac {2-x^3}{x}\right )\right )}{\left (-8 x^2+4 x^5\right ) \log \left (\frac {2-x^3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 0.94 \begin {gather*} \frac {4 \, x^{2} \log \left (\log \left (-\frac {x^{3} - 2}{x}\right )\right )^{2} + 4 \, x^{3} + x^{2} - 20}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x^{5} - 2 \, x^{2}\right )} \log \left (-\frac {x^{3} - 2}{x}\right ) \log \left (\log \left (-\frac {x^{3} - 2}{x}\right )\right )^{2} + {\left (8 \, x^{6} + x^{5} + 4 \, x^{3} - 2 \, x^{2} - 40\right )} \log \left (-\frac {x^{3} - 2}{x}\right ) + 16 \, {\left (x^{5} + x^{2}\right )} \log \left (\log \left (-\frac {x^{3} - 2}{x}\right )\right )}{4 \, {\left (x^{5} - 2 \, x^{2}\right )} \log \left (-\frac {x^{3} - 2}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (4 x^{5}-8 x^{2}\right ) \ln \left (\frac {-x^{3}+2}{x}\right ) \ln \left (\ln \left (\frac {-x^{3}+2}{x}\right )\right )^{2}+\left (16 x^{5}+16 x^{2}\right ) \ln \left (\ln \left (\frac {-x^{3}+2}{x}\right )\right )+\left (8 x^{6}+x^{5}+4 x^{3}-2 x^{2}-40\right ) \ln \left (\frac {-x^{3}+2}{x}\right )}{\left (4 x^{5}-8 x^{2}\right ) \ln \left (\frac {-x^{3}+2}{x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 30, normalized size = 0.83 \begin {gather*} x \log \left (\log \left (-x^{3} + 2\right ) - \log \relax (x)\right )^{2} + x^{2} + \frac {1}{4} \, x - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.56, size = 28, normalized size = 0.78 \begin {gather*} \frac {x}{4}+x\,{\ln \left (\ln \left (-\frac {x^3-2}{x}\right )\right )}^2-\frac {5}{x}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 22, normalized size = 0.61 \begin {gather*} x^{2} + x \log {\left (\log {\left (\frac {2 - x^{3}}{x} \right )} \right )}^{2} + \frac {x}{4} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________