Optimal. Leaf size=27 \[ -x^2+\frac {\log ^2(x)}{e^2 x}-6 \log \left (e^{5 x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 8, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 14, 2304, 2305} \begin {gather*} -x^2-30 x+\frac {\log ^2(x)}{e^2 x}-6 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^2 \left (-6 x-30 x^2-2 x^3\right )+2 \log (x)-\log ^2(x)}{x^2} \, dx}{e^2}\\ &=\frac {\int \left (-\frac {2 e^2 \left (3+15 x+x^2\right )}{x}+\frac {2 \log (x)}{x^2}-\frac {\log ^2(x)}{x^2}\right ) \, dx}{e^2}\\ &=-\left (2 \int \frac {3+15 x+x^2}{x} \, dx\right )-\frac {\int \frac {\log ^2(x)}{x^2} \, dx}{e^2}+\frac {2 \int \frac {\log (x)}{x^2} \, dx}{e^2}\\ &=-\frac {2}{e^2 x}-\frac {2 \log (x)}{e^2 x}+\frac {\log ^2(x)}{e^2 x}-2 \int \left (15+\frac {3}{x}+x\right ) \, dx-\frac {2 \int \frac {\log (x)}{x^2} \, dx}{e^2}\\ &=-30 x-x^2-6 \log (x)+\frac {\log ^2(x)}{e^2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 35, normalized size = 1.30 \begin {gather*} -\frac {30 e^2 x+e^2 x^2+6 e^2 \log (x)-\frac {\log ^2(x)}{x}}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 33, normalized size = 1.22 \begin {gather*} -\frac {{\left (6 \, x e^{2} \log \relax (x) + {\left (x^{3} + 30 \, x^{2}\right )} e^{2} - \log \relax (x)^{2}\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 34, normalized size = 1.26 \begin {gather*} -\frac {{\left (x^{3} e^{2} + 30 \, x^{2} e^{2} + 6 \, x e^{2} \log \relax (x) - \log \relax (x)^{2}\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.89
method | result | size |
risch | \(-x^{2}-30 x -6 \ln \relax (x )+\frac {\ln \relax (x )^{2} {\mathrm e}^{-2}}{x}\) | \(24\) |
norman | \(\frac {\ln \relax (x )^{2} {\mathrm e}^{-2}-6 x \ln \relax (x )-30 x^{2}-x^{3}}{x}\) | \(30\) |
default | \({\mathrm e}^{-2} \left (-x^{2} {\mathrm e}^{2}-30 \,{\mathrm e}^{2} x -6 \,{\mathrm e}^{2} \ln \relax (x )+\frac {\ln \relax (x )^{2}}{x}\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 49, normalized size = 1.81 \begin {gather*} -{\left (x^{2} e^{2} + 30 \, x e^{2} + 6 \, e^{2} \log \relax (x) - \frac {\log \relax (x)^{2} + 2 \, \log \relax (x) + 2}{x} + \frac {2 \, \log \relax (x)}{x} + \frac {2}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 23, normalized size = 0.85 \begin {gather*} \frac {{\mathrm {e}}^{-2}\,{\ln \relax (x)}^2}{x}-6\,\ln \relax (x)-x^2-30\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.74 \begin {gather*} - x^{2} - 30 x - 6 \log {\relax (x )} + \frac {\log {\relax (x )}^{2}}{x e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________