Optimal. Leaf size=27 \[ 3+\frac {4+e^{-e^5} x^2 \log (4)}{4+\log ^2(\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 2.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^2 \log (4) \log (x)+\left (-8 e^{e^5}-2 x^2 \log (4)\right ) \log (\log (x))+2 x^2 \log (4) \log (x) \log ^2(\log (x))}{16 e^{e^5} x \log (x)+8 e^{e^5} x \log (x) \log ^2(\log (x))+e^{e^5} x \log (x) \log ^4(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^5} \left (-2 \left (4 e^{e^5}+x^2 \log (4)\right ) \log (\log (x))+2 x^2 \log (4) \log (x) \left (4+\log ^2(\log (x))\right )\right )}{x \log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx\\ &=e^{-e^5} \int \frac {-2 \left (4 e^{e^5}+x^2 \log (4)\right ) \log (\log (x))+2 x^2 \log (4) \log (x) \left (4+\log ^2(\log (x))\right )}{x \log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx\\ &=e^{-e^5} \int \left (-\frac {2 \left (4 e^{e^5}+x^2 \log (4)\right ) \log (\log (x))}{x \log (x) \left (4+\log ^2(\log (x))\right )^2}+\frac {x \log (16)}{4+\log ^2(\log (x))}\right ) \, dx\\ &=-\left (\left (2 e^{-e^5}\right ) \int \frac {\left (4 e^{e^5}+x^2 \log (4)\right ) \log (\log (x))}{x \log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx\right )+\left (e^{-e^5} \log (16)\right ) \int \frac {x}{4+\log ^2(\log (x))} \, dx\\ &=-\left (\left (2 e^{-e^5}\right ) \int \left (\frac {4 e^{e^5} \log (\log (x))}{x \log (x) \left (4+\log ^2(\log (x))\right )^2}+\frac {x \log (4) \log (\log (x))}{\log (x) \left (4+\log ^2(\log (x))\right )^2}\right ) \, dx\right )+\left (e^{-e^5} \log (16)\right ) \int \frac {x}{4+\log ^2(\log (x))} \, dx\\ &=-\left (8 \int \frac {\log (\log (x))}{x \log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx\right )-\left (2 e^{-e^5} \log (4)\right ) \int \frac {x \log (\log (x))}{\log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx+\left (e^{-e^5} \log (16)\right ) \int \frac {x}{4+\log ^2(\log (x))} \, dx\\ &=-\left (8 \operatorname {Subst}\left (\int \frac {\log (x)}{x \left (4+\log ^2(x)\right )^2} \, dx,x,\log (x)\right )\right )-\left (2 e^{-e^5} \log (4)\right ) \int \frac {x \log (\log (x))}{\log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx+\left (e^{-e^5} \log (16)\right ) \int \frac {x}{4+\log ^2(\log (x))} \, dx\\ &=-\left (8 \operatorname {Subst}\left (\int \frac {x}{\left (4+x^2\right )^2} \, dx,x,\log (\log (x))\right )\right )-\left (2 e^{-e^5} \log (4)\right ) \int \frac {x \log (\log (x))}{\log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx+\left (e^{-e^5} \log (16)\right ) \int \frac {x}{4+\log ^2(\log (x))} \, dx\\ &=\frac {4}{4+\log ^2(\log (x))}-\left (2 e^{-e^5} \log (4)\right ) \int \frac {x \log (\log (x))}{\log (x) \left (4+\log ^2(\log (x))\right )^2} \, dx+\left (e^{-e^5} \log (16)\right ) \int \frac {x}{4+\log ^2(\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 31, normalized size = 1.15 \begin {gather*} \frac {e^{-e^5} \left (4 e^{e^5}+x^2 \log (4)\right )}{4+\log ^2(\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 31, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left (x^{2} \log \relax (2) + 2 \, e^{\left (e^{5}\right )}\right )}}{e^{\left (e^{5}\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, e^{\left (e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 24, normalized size = 0.89 \begin {gather*} \frac {2 \, {\left (x^{2} e^{\left (-e^{5}\right )} \log \relax (2) + 2\right )}}{\log \left (\log \relax (x)\right )^{2} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.07
method | result | size |
risch | \(\frac {2 \left (x^{2} \ln \relax (2)+2 \,{\mathrm e}^{{\mathrm e}^{5}}\right ) {\mathrm e}^{-{\mathrm e}^{5}}}{4+\ln \left (\ln \relax (x )\right )^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 31, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left (x^{2} \log \relax (2) + 2 \, e^{\left (e^{5}\right )}\right )}}{e^{\left (e^{5}\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, e^{\left (e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 28, normalized size = 1.04 \begin {gather*} \frac {2\,{\mathrm {e}}^{-{\mathrm {e}}^5}\,\left (\ln \relax (2)\,x^2+2\,{\mathrm {e}}^{{\mathrm {e}}^5}\right )}{{\ln \left (\ln \relax (x)\right )}^2+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 32, normalized size = 1.19 \begin {gather*} \frac {2 x^{2} \log {\relax (2 )} + 4 e^{e^{5}}}{e^{e^{5}} \log {\left (\log {\relax (x )} \right )}^{2} + 4 e^{e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________