Optimal. Leaf size=27 \[ \frac {5 x \log (x)}{5-e^{\frac {e^{e^6}}{x}}+3 (-4+x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-35 x+15 x^2-35 x \log (x)+e^{\frac {e^{e^6}}{x}} \left (-5 x+\left (-5 e^{e^6}-5 x\right ) \log (x)\right )}{49 x+e^{\frac {2 e^{e^6}}{x}} x-42 x^2+9 x^3+e^{\frac {e^{e^6}}{x}} \left (14 x-6 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-35 x+15 x^2-35 x \log (x)+e^{\frac {e^{e^6}}{x}} \left (-5 x+\left (-5 e^{e^6}-5 x\right ) \log (x)\right )}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\\ &=\int \left (-\frac {5 \left (-7 e^{e^6}+3 e^{e^6} x+3 x^2\right ) \log (x)}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x}-\frac {5 \left (x+e^{e^6} \log (x)+x \log (x)\right )}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x}\right ) \, dx\\ &=-\left (5 \int \frac {\left (-7 e^{e^6}+3 e^{e^6} x+3 x^2\right ) \log (x)}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\right )-5 \int \frac {x+e^{e^6} \log (x)+x \log (x)}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx\\ &=-\left (5 \int \left (\frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x}+\frac {\log (x)}{7+e^{\frac {e^{e^6}}{x}}-3 x}+\frac {e^{e^6} \log (x)}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x}\right ) \, dx\right )+5 \int \frac {3 e^{e^6} \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-7 e^{e^6} \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx+3 \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x} \, dx-(15 \log (x)) \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-\left (15 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx+\left (35 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\\ &=-\left (5 \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx\right )-5 \int \frac {\log (x)}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx+5 \int \left (\frac {e^{e^6} \left (3 \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-7 \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\right )}{x}+\frac {3 \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x}\right ) \, dx-\left (5 e^{e^6}\right ) \int \frac {\log (x)}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx-(15 \log (x)) \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-\left (15 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx+\left (35 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\\ &=-\left (5 \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx\right )+5 \int \frac {\int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x} \, dx+\left (5 e^{e^6}\right ) \int \frac {3 \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-7 \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx}{x} \, dx+\left (5 e^{e^6}\right ) \int \frac {\int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx-(15 \log (x)) \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-\left (5 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx-\left (15 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx+\left (35 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\\ &=-\left (5 \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx\right )+5 \int \frac {\int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x} \, dx+\left (5 e^{e^6}\right ) \int \left (\frac {3 \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x}-\frac {7 \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx}{x}\right ) \, dx+\left (5 e^{e^6}\right ) \int \frac {\int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx-(15 \log (x)) \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-\left (5 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx-\left (15 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx+\left (35 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\\ &=-\left (5 \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx\right )+5 \int \frac {\int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x} \, dx+\left (5 e^{e^6}\right ) \int \frac {\int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx}{x} \, dx+\left (15 e^{e^6}\right ) \int \frac {\int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx}{x} \, dx-\left (35 e^{e^6}\right ) \int \frac {\int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{7+e^{\frac {e^{e^6}}{x}}-3 x} \, dx-(15 \log (x)) \int \frac {x}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx-\left (5 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right ) x} \, dx-\left (15 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2} \, dx+\left (35 e^{e^6} \log (x)\right ) \int \frac {1}{\left (7+e^{\frac {e^{e^6}}{x}}-3 x\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 23, normalized size = 0.85 \begin {gather*} -\frac {5 x \log (x)}{7+e^{\frac {e^{e^6}}{x}}-3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 22, normalized size = 0.81 \begin {gather*} \frac {5 \, x \log \relax (x)}{3 \, x - e^{\left (\frac {e^{\left (e^{6}\right )}}{x}\right )} - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 0.85
method | result | size |
risch | \(\frac {5 x \ln \relax (x )}{3 x -7-{\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{6}}}{x}}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 22, normalized size = 0.81 \begin {gather*} \frac {5 \, x \log \relax (x)}{3 \, x - e^{\left (\frac {e^{\left (e^{6}\right )}}{x}\right )} - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 69, normalized size = 2.56 \begin {gather*} -\frac {5\,\left (3\,x^5\,\ln \relax (x)-7\,x^3\,{\mathrm {e}}^{{\mathrm {e}}^6}\,\ln \relax (x)+3\,x^4\,{\mathrm {e}}^{{\mathrm {e}}^6}\,\ln \relax (x)\right )}{\left (3\,x^4+3\,{\mathrm {e}}^{{\mathrm {e}}^6}\,x^3-7\,{\mathrm {e}}^{{\mathrm {e}}^6}\,x^2\right )\,\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^6}}{x}}-3\,x+7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 20, normalized size = 0.74 \begin {gather*} - \frac {5 x \log {\relax (x )}}{- 3 x + e^{\frac {e^{e^{6}}}{x}} + 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________