Optimal. Leaf size=32 \[ x \left (5-\frac {2 x}{x+\frac {2}{2 x-4 x \left (5+\frac {5}{x}+x+\log (x)\right )}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5-60 x+268 x^2+536 x^3+363 x^4+108 x^5+12 x^6+\left (-8 x^2+120 x^3+108 x^4+24 x^5\right ) \log (x)+12 x^4 \log ^2(x)}{1-20 x+82 x^2+176 x^3+121 x^4+36 x^5+4 x^6+\left (-4 x^2+40 x^3+36 x^4+8 x^5\right ) \log (x)+4 x^4 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5-60 x+268 x^2+536 x^3+363 x^4+108 x^5+12 x^6+4 x^2 \left (-2+30 x+27 x^2+6 x^3\right ) \log (x)+12 x^4 \log ^2(x)}{\left (1-10 x-9 x^2-2 x^3-2 x^2 \log (x)\right )^2} \, dx\\ &=\int \left (3+\frac {4 \left (1-5 x+x^2+x^3\right )}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2}+\frac {2}{-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)}\right ) \, dx\\ &=3 x+2 \int \frac {1}{-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)} \, dx+4 \int \frac {1-5 x+x^2+x^3}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2} \, dx\\ &=3 x+2 \int \frac {1}{-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)} \, dx+4 \int \left (\frac {1}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2}-\frac {5 x}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2}+\frac {x^2}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2}+\frac {x^3}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2}\right ) \, dx\\ &=3 x+2 \int \frac {1}{-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)} \, dx+4 \int \frac {1}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2} \, dx+4 \int \frac {x^2}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2} \, dx+4 \int \frac {x^3}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2} \, dx-20 \int \frac {x}{\left (-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 31, normalized size = 0.97 \begin {gather*} 3 x-\frac {2 x}{-1+10 x+9 x^2+2 x^3+2 x^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 51, normalized size = 1.59 \begin {gather*} \frac {6 \, x^{4} + 6 \, x^{3} \log \relax (x) + 27 \, x^{3} + 30 \, x^{2} - 5 \, x}{2 \, x^{3} + 2 \, x^{2} \log \relax (x) + 9 \, x^{2} + 10 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 31, normalized size = 0.97 \begin {gather*} 3 \, x - \frac {2 \, x}{2 \, x^{3} + 2 \, x^{2} \log \relax (x) + 9 \, x^{2} + 10 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 32, normalized size = 1.00
method | result | size |
risch | \(3 x -\frac {2 x}{2 x^{2} \ln \relax (x )+2 x^{3}+9 x^{2}+10 x -1}\) | \(32\) |
norman | \(\frac {-5 x +27 x^{3}+30 x^{2}+6 x^{4}+6 x^{3} \ln \relax (x )}{2 x^{2} \ln \relax (x )+2 x^{3}+9 x^{2}+10 x -1}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 51, normalized size = 1.59 \begin {gather*} \frac {6 \, x^{4} + 6 \, x^{3} \log \relax (x) + 27 \, x^{3} + 30 \, x^{2} - 5 \, x}{2 \, x^{3} + 2 \, x^{2} \log \relax (x) + 9 \, x^{2} + 10 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.25, size = 31, normalized size = 0.97 \begin {gather*} 3\,x-\frac {2\,x}{10\,x+2\,x^2\,\ln \relax (x)+9\,x^2+2\,x^3-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 29, normalized size = 0.91 \begin {gather*} 3 x - \frac {2 x}{2 x^{3} + 2 x^{2} \log {\relax (x )} + 9 x^{2} + 10 x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________