Optimal. Leaf size=25 \[ 16 \left (1+e^{5 x^3} (-4+x)+x^2 \log ^2(x)\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (e^{5 x^3} \left (32-1920 x^2+480 x^3\right )+e^{10 x^3} \left (-128+32 x+7680 x^2-3840 x^3+480 x^4\right )+\left (64 x+e^{5 x^3} \left (-256 x+64 x^2\right )\right ) \log (x)+\left (64 x+e^{5 x^3} \left (-256 x+96 x^2-1920 x^4+480 x^5\right )\right ) \log ^2(x)+64 x^3 \log ^3(x)+64 x^3 \log ^4(x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=64 \int x^3 \log ^3(x) \, dx+64 \int x^3 \log ^4(x) \, dx+\int e^{5 x^3} \left (32-1920 x^2+480 x^3\right ) \, dx+\int e^{10 x^3} \left (-128+32 x+7680 x^2-3840 x^3+480 x^4\right ) \, dx+\int \left (64 x+e^{5 x^3} \left (-256 x+64 x^2\right )\right ) \log (x) \, dx+\int \left (64 x+e^{5 x^3} \left (-256 x+96 x^2-1920 x^4+480 x^5\right )\right ) \log ^2(x) \, dx\\ &=\frac {64}{15} e^{5 x^3} \log (x)+32 x^2 \log (x)+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+16 x^4 \log ^3(x)+16 x^4 \log ^4(x)-48 \int x^3 \log ^2(x) \, dx-64 \int x^3 \log ^3(x) \, dx+\int \left (32 e^{5 x^3}-1920 e^{5 x^3} x^2+480 e^{5 x^3} x^3\right ) \, dx+\int \left (-128 e^{10 x^3}+32 e^{10 x^3} x+7680 e^{10 x^3} x^2-3840 e^{10 x^3} x^3+480 e^{10 x^3} x^4\right ) \, dx-\int \frac {32 \left (2 e^{5 x^3} x+15 x^3-8 \sqrt [3]{5} \sqrt [3]{-x^3} \Gamma \left (\frac {2}{3},-5 x^3\right )\right )}{15 x^2} \, dx+\int \left (64 x \log ^2(x)+32 e^{5 x^3} x \left (-8+3 x-60 x^3+15 x^4\right ) \log ^2(x)\right ) \, dx\\ &=\frac {64}{15} e^{5 x^3} \log (x)+32 x^2 \log (x)+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}-12 x^4 \log ^2(x)+16 x^4 \log ^4(x)-\frac {32}{15} \int \frac {2 e^{5 x^3} x+15 x^3-8 \sqrt [3]{5} \sqrt [3]{-x^3} \Gamma \left (\frac {2}{3},-5 x^3\right )}{x^2} \, dx+24 \int x^3 \log (x) \, dx+32 \int e^{5 x^3} \, dx+32 \int e^{10 x^3} x \, dx+32 \int e^{5 x^3} x \left (-8+3 x-60 x^3+15 x^4\right ) \log ^2(x) \, dx+48 \int x^3 \log ^2(x) \, dx+64 \int x \log ^2(x) \, dx-128 \int e^{10 x^3} \, dx+480 \int e^{5 x^3} x^3 \, dx+480 \int e^{10 x^3} x^4 \, dx-1920 \int e^{5 x^3} x^2 \, dx-3840 \int e^{10 x^3} x^3 \, dx+7680 \int e^{10 x^3} x^2 \, dx\\ &=-128 e^{5 x^3}+256 e^{10 x^3}-\frac {3 x^4}{2}+\frac {64\ 2^{2/3} x \Gamma \left (\frac {1}{3},-10 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {32 x \Gamma \left (\frac {1}{3},-5 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {16 \sqrt [3]{2} x^2 \Gamma \left (\frac {2}{3},-10 x^3\right )}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+\frac {64\ 2^{2/3} x^4 \Gamma \left (\frac {4}{3},-10 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {32 x^4 \Gamma \left (\frac {4}{3},-5 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {8 \sqrt [3]{2} x^5 \Gamma \left (\frac {5}{3},-10 x^3\right )}{5^{2/3} \left (-x^3\right )^{5/3}}+\frac {64}{15} e^{5 x^3} \log (x)+32 x^2 \log (x)+6 x^4 \log (x)+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+32 x^2 \log ^2(x)+16 x^4 \log ^4(x)-\frac {32}{15} \int \left (\frac {2 e^{5 x^3}}{x}+15 x+\frac {8 \sqrt [3]{5} x \Gamma \left (\frac {2}{3},-5 x^3\right )}{\left (-x^3\right )^{2/3}}\right ) \, dx-24 \int x^3 \log (x) \, dx+32 \int \left (-8 e^{5 x^3} x \log ^2(x)+3 e^{5 x^3} x^2 \log ^2(x)-60 e^{5 x^3} x^4 \log ^2(x)+15 e^{5 x^3} x^5 \log ^2(x)\right ) \, dx-64 \int x \log (x) \, dx\\ &=-128 e^{5 x^3}+256 e^{10 x^3}+\frac {64\ 2^{2/3} x \Gamma \left (\frac {1}{3},-10 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {32 x \Gamma \left (\frac {1}{3},-5 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {16 \sqrt [3]{2} x^2 \Gamma \left (\frac {2}{3},-10 x^3\right )}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+\frac {64\ 2^{2/3} x^4 \Gamma \left (\frac {4}{3},-10 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {32 x^4 \Gamma \left (\frac {4}{3},-5 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {8 \sqrt [3]{2} x^5 \Gamma \left (\frac {5}{3},-10 x^3\right )}{5^{2/3} \left (-x^3\right )^{5/3}}+\frac {64}{15} e^{5 x^3} \log (x)+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+32 x^2 \log ^2(x)+16 x^4 \log ^4(x)-\frac {64}{15} \int \frac {e^{5 x^3}}{x} \, dx+96 \int e^{5 x^3} x^2 \log ^2(x) \, dx-256 \int e^{5 x^3} x \log ^2(x) \, dx+480 \int e^{5 x^3} x^5 \log ^2(x) \, dx-1920 \int e^{5 x^3} x^4 \log ^2(x) \, dx-\frac {256 \int \frac {x \Gamma \left (\frac {2}{3},-5 x^3\right )}{\left (-x^3\right )^{2/3}} \, dx}{3\ 5^{2/3}}\\ &=-128 e^{5 x^3}+256 e^{10 x^3}-\frac {64 \text {Ei}\left (5 x^3\right )}{45}+\frac {64\ 2^{2/3} x \Gamma \left (\frac {1}{3},-10 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {32 x \Gamma \left (\frac {1}{3},-5 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {16 \sqrt [3]{2} x^2 \Gamma \left (\frac {2}{3},-10 x^3\right )}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+\frac {64\ 2^{2/3} x^4 \Gamma \left (\frac {4}{3},-10 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {32 x^4 \Gamma \left (\frac {4}{3},-5 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {8 \sqrt [3]{2} x^5 \Gamma \left (\frac {5}{3},-10 x^3\right )}{5^{2/3} \left (-x^3\right )^{5/3}}+\frac {64}{15} e^{5 x^3} \log (x)+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+32 x^2 \log ^2(x)+16 x^4 \log ^4(x)+96 \int e^{5 x^3} x^2 \log ^2(x) \, dx-256 \int e^{5 x^3} x \log ^2(x) \, dx+480 \int e^{5 x^3} x^5 \log ^2(x) \, dx-1920 \int e^{5 x^3} x^4 \log ^2(x) \, dx-\frac {\left (256 x^2\right ) \int \frac {\Gamma \left (\frac {2}{3},-5 x^3\right )}{x} \, dx}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}\\ &=-128 e^{5 x^3}+256 e^{10 x^3}-\frac {64 \text {Ei}\left (5 x^3\right )}{45}+\frac {64\ 2^{2/3} x \Gamma \left (\frac {1}{3},-10 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {32 x \Gamma \left (\frac {1}{3},-5 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {16 \sqrt [3]{2} x^2 \Gamma \left (\frac {2}{3},-10 x^3\right )}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+\frac {64\ 2^{2/3} x^4 \Gamma \left (\frac {4}{3},-10 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {32 x^4 \Gamma \left (\frac {4}{3},-5 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {8 \sqrt [3]{2} x^5 \Gamma \left (\frac {5}{3},-10 x^3\right )}{5^{2/3} \left (-x^3\right )^{5/3}}+\frac {64}{15} e^{5 x^3} \log (x)+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+32 x^2 \log ^2(x)+16 x^4 \log ^4(x)+96 \int e^{5 x^3} x^2 \log ^2(x) \, dx-256 \int e^{5 x^3} x \log ^2(x) \, dx+480 \int e^{5 x^3} x^5 \log ^2(x) \, dx-1920 \int e^{5 x^3} x^4 \log ^2(x) \, dx-\frac {\left (256 x^2\right ) \operatorname {Subst}\left (\int \frac {\Gamma \left (\frac {2}{3},-5 x\right )}{x} \, dx,x,x^3\right )}{9\ 5^{2/3} \left (-x^3\right )^{2/3}}\\ &=-128 e^{5 x^3}+256 e^{10 x^3}-\frac {64 \text {Ei}\left (5 x^3\right )}{45}+\frac {64\ 2^{2/3} x \Gamma \left (\frac {1}{3},-10 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {32 x \Gamma \left (\frac {1}{3},-5 x^3\right )}{3 \sqrt [3]{5} \sqrt [3]{-x^3}}-\frac {16 \sqrt [3]{2} x^2 \Gamma \left (\frac {2}{3},-10 x^3\right )}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+\frac {64\ 2^{2/3} x^4 \Gamma \left (\frac {4}{3},-10 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {32 x^4 \Gamma \left (\frac {4}{3},-5 x^3\right )}{\sqrt [3]{5} \left (-x^3\right )^{4/3}}-\frac {8 \sqrt [3]{2} x^5 \Gamma \left (\frac {5}{3},-10 x^3\right )}{5^{2/3} \left (-x^3\right )^{5/3}}+64 x^2 \, _2F_2\left (\frac {2}{3},\frac {2}{3};\frac {5}{3},\frac {5}{3};5 x^3\right )+\frac {64}{15} e^{5 x^3} \log (x)-\frac {256 x^2 \Gamma \left (\frac {2}{3}\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+\frac {256 x^2 \Gamma \left (\frac {2}{3},-5 x^3\right ) \log (x)}{3\ 5^{2/3} \left (-x^3\right )^{2/3}}+32 x^2 \log ^2(x)+16 x^4 \log ^4(x)+96 \int e^{5 x^3} x^2 \log ^2(x) \, dx-256 \int e^{5 x^3} x \log ^2(x) \, dx+480 \int e^{5 x^3} x^5 \log ^2(x) \, dx-1920 \int e^{5 x^3} x^4 \log ^2(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.62, size = 429, normalized size = 17.16 \begin {gather*} \frac {8 \left (-1200 e^{5 x^3} x^2+2400 e^{10 x^3} x^2-40\ 10^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {1}{3},-10 x^3\right )+20\ 5^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {1}{3},-5 x^3\right )+10 \sqrt [3]{10} x \sqrt [3]{-x^3} \Gamma \left (\frac {2}{3},-10 x^3\right )+120\ 10^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {4}{3},-10 x^3\right )-60\ 5^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {4}{3},-5 x^3\right )-15 \sqrt [3]{10} x \sqrt [3]{-x^3} \Gamma \left (\frac {5}{3},-10 x^3\right )-600 x^4 \, _3F_3\left (\frac {2}{3},\frac {2}{3},\frac {2}{3};\frac {5}{3},\frac {5}{3},\frac {5}{3};5 x^3\right )-288 x^7 \, _3F_3\left (\frac {5}{3},\frac {5}{3},\frac {5}{3};\frac {8}{3},\frac {8}{3},\frac {8}{3};5 x^3\right )+160 \sqrt [3]{5} x \sqrt [3]{-x^3} \Gamma \left (\frac {2}{3},0,-5 x^3\right ) \log (x)+1440 x^7 \, _2F_2\left (\frac {5}{3},\frac {5}{3};\frac {8}{3},\frac {8}{3};5 x^3\right ) \log (x)+300 x^4 \log ^2(x)+300 e^{5 x^3} x^5 \log ^2(x)+160 \sqrt [3]{5} x \sqrt [3]{-x^3} \Gamma \left (\frac {2}{3},0,-5 x^3\right ) \log ^2(x)-240 \sqrt [3]{5} x \sqrt [3]{-x^3} \Gamma \left (\frac {5}{3},0,-5 x^3\right ) \log ^2(x)+150 x^6 \log ^4(x)+600 x^4 \, _2F_2\left (\frac {2}{3},\frac {2}{3};\frac {5}{3},\frac {5}{3};5 x^3\right ) (1+2 \log (x))\right )}{75 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.02, size = 63, normalized size = 2.52 \begin {gather*} 16 \, x^{4} \log \relax (x)^{4} + 32 \, {\left (x^{2} + {\left (x^{3} - 4 \, x^{2}\right )} e^{\left (5 \, x^{3}\right )}\right )} \log \relax (x)^{2} + 16 \, {\left (x^{2} - 8 \, x + 16\right )} e^{\left (10 \, x^{3}\right )} + 32 \, {\left (x - 4\right )} e^{\left (5 \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 64 \, x^{3} \log \relax (x)^{4} + 64 \, x^{3} \log \relax (x)^{3} + 32 \, {\left ({\left (15 \, x^{5} - 60 \, x^{4} + 3 \, x^{2} - 8 \, x\right )} e^{\left (5 \, x^{3}\right )} + 2 \, x\right )} \log \relax (x)^{2} + 32 \, {\left (15 \, x^{4} - 120 \, x^{3} + 240 \, x^{2} + x - 4\right )} e^{\left (10 \, x^{3}\right )} + 32 \, {\left (15 \, x^{3} - 60 \, x^{2} + 1\right )} e^{\left (5 \, x^{3}\right )} + 64 \, {\left ({\left (x^{2} - 4 \, x\right )} e^{\left (5 \, x^{3}\right )} + x\right )} \log \relax (x)\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 73, normalized size = 2.92
method | result | size |
risch | \(16 x^{4} \ln \relax (x )^{4}+\left (16 x^{2}-128 x +256\right ) {\mathrm e}^{10 x^{3}}+\left (32 x -128\right ) {\mathrm e}^{5 x^{3}}+\left (32 \,{\mathrm e}^{5 x^{3}} x^{3}-128 x^{2} {\mathrm e}^{5 x^{3}}+32 x^{2}\right ) \ln \relax (x )^{2}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 106, normalized size = 4.24 \begin {gather*} 16 \, x^{4} \log \relax (x)^{4} - \frac {32 \cdot 5^{\frac {2}{3}} x^{4} \Gamma \left (\frac {4}{3}, -5 \, x^{3}\right )}{5 \, \left (-x^{3}\right )^{\frac {4}{3}}} + 32 \, x^{2} \log \relax (x)^{2} + 32 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{\left (5 \, x^{3}\right )} \log \relax (x)^{2} - \frac {32 \cdot 5^{\frac {2}{3}} x \Gamma \left (\frac {1}{3}, -5 \, x^{3}\right )}{15 \, \left (-x^{3}\right )^{\frac {1}{3}}} + 16 \, {\left (x^{2} - 8 \, x + 16\right )} e^{\left (10 \, x^{3}\right )} - 128 \, e^{\left (5 \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int 64\,x^3\,{\ln \relax (x)}^3+64\,x^3\,{\ln \relax (x)}^4+{\ln \relax (x)}^2\,\left (64\,x-{\mathrm {e}}^{5\,x^3}\,\left (-480\,x^5+1920\,x^4-96\,x^2+256\,x\right )\right )+{\mathrm {e}}^{5\,x^3}\,\left (480\,x^3-1920\,x^2+32\right )+{\mathrm {e}}^{10\,x^3}\,\left (480\,x^4-3840\,x^3+7680\,x^2+32\,x-128\right )+\ln \relax (x)\,\left (64\,x-{\mathrm {e}}^{5\,x^3}\,\left (256\,x-64\,x^2\right )\right ) \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 68, normalized size = 2.72 \begin {gather*} 16 x^{4} \log {\relax (x )}^{4} + 32 x^{2} \log {\relax (x )}^{2} + \left (16 x^{2} - 128 x + 256\right ) e^{10 x^{3}} + \left (32 x^{3} \log {\relax (x )}^{2} - 128 x^{2} \log {\relax (x )}^{2} + 32 x - 128\right ) e^{5 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________