Optimal. Leaf size=33 \[ -4-\left (4+\frac {4}{x^2}\right )^2+x+\frac {1}{2} \left (4+\frac {x}{3}-\log (\log (\log (4+x)))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.80, antiderivative size = 26, normalized size of antiderivative = 0.79, number of steps used = 6, number of rules used = 4, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {1593, 6742, 14, 6684} \begin {gather*} -\frac {16}{x^4}-\frac {32}{x^2}+\frac {7 x}{6}-\frac {1}{2} \log (\log (\log (x+4))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 1593
Rule 6684
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x^5+\left (1536+384 x+1536 x^2+384 x^3+28 x^5+7 x^6\right ) \log (4+x) \log (\log (4+x))}{x^5 (24+6 x) \log (4+x) \log (\log (4+x))} \, dx\\ &=\int \left (\frac {384+384 x^2+7 x^5}{6 x^5}-\frac {1}{2 (4+x) \log (4+x) \log (\log (4+x))}\right ) \, dx\\ &=\frac {1}{6} \int \frac {384+384 x^2+7 x^5}{x^5} \, dx-\frac {1}{2} \int \frac {1}{(4+x) \log (4+x) \log (\log (4+x))} \, dx\\ &=-\frac {1}{2} \log (\log (\log (4+x)))+\frac {1}{6} \int \left (7+\frac {384}{x^5}+\frac {384}{x^3}\right ) \, dx\\ &=-\frac {16}{x^4}-\frac {32}{x^2}+\frac {7 x}{6}-\frac {1}{2} \log (\log (\log (4+x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 26, normalized size = 0.79 \begin {gather*} \frac {1}{6} \left (-\frac {96}{x^4}-\frac {192}{x^2}+7 x-3 \log (\log (\log (4+x)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 0.85 \begin {gather*} \frac {7 \, x^{5} - 3 \, x^{4} \log \left (\log \left (\log \left (x + 4\right )\right )\right ) - 192 \, x^{2} - 96}{6 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 0.73 \begin {gather*} \frac {7}{6} \, x - \frac {16 \, {\left (2 \, x^{2} + 1\right )}}{x^{4}} - \frac {1}{2} \, \log \left (\log \left (\log \left (x + 4\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.70
method | result | size |
default | \(\frac {7 x}{6}-\frac {16}{x^{4}}-\frac {32}{x^{2}}-\frac {\ln \left (\ln \left (\ln \left (4+x \right )\right )\right )}{2}\) | \(23\) |
risch | \(\frac {7 x^{5}-192 x^{2}-96}{6 x^{4}}-\frac {\ln \left (\ln \left (\ln \left (4+x \right )\right )\right )}{2}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 60, normalized size = 1.82 \begin {gather*} \frac {7}{6} \, x + \frac {16 \, {\left (x - 2\right )}}{x^{2}} - \frac {16}{x} - \frac {3 \, x^{2} - 6 \, x + 16}{3 \, x^{3}} + \frac {3 \, x^{3} - 6 \, x^{2} + 16 \, x - 48}{3 \, x^{4}} - \frac {1}{2} \, \log \left (\log \left (\log \left (x + 4\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 24, normalized size = 0.73 \begin {gather*} \frac {7\,x}{6}-\frac {\ln \left (\ln \left (\ln \left (x+4\right )\right )\right )}{2}-\frac {32\,x^2+16}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 27, normalized size = 0.82 \begin {gather*} \frac {7 x}{6} - \frac {\log {\left (\log {\left (\log {\left (x + 4 \right )} \right )} \right )}}{2} + \frac {- 192 x^{2} - 96}{6 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________