Optimal. Leaf size=27 \[ 5-e^x-\frac {e^x-x^2}{\left (5-\frac {3 x}{2}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 11, number of rules used = 6, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {6742, 37, 2199, 2194, 2177, 2178} \begin {gather*} \frac {4 x^2}{(10-3 x)^2}-e^x-\frac {4 e^x}{(10-3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 37
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {80 x}{(-10+3 x)^3}-\frac {e^x \left (-1064+912 x-270 x^2+27 x^3\right )}{(-10+3 x)^3}\right ) \, dx\\ &=-\left (80 \int \frac {x}{(-10+3 x)^3} \, dx\right )-\int \frac {e^x \left (-1064+912 x-270 x^2+27 x^3\right )}{(-10+3 x)^3} \, dx\\ &=\frac {4 x^2}{(10-3 x)^2}-\int \left (e^x-\frac {24 e^x}{(-10+3 x)^3}+\frac {4 e^x}{(-10+3 x)^2}\right ) \, dx\\ &=\frac {4 x^2}{(10-3 x)^2}-4 \int \frac {e^x}{(-10+3 x)^2} \, dx+24 \int \frac {e^x}{(-10+3 x)^3} \, dx-\int e^x \, dx\\ &=-e^x-\frac {4 e^x}{(10-3 x)^2}-\frac {4 e^x}{3 (10-3 x)}+\frac {4 x^2}{(10-3 x)^2}-\frac {4}{3} \int \frac {e^x}{-10+3 x} \, dx+4 \int \frac {e^x}{(-10+3 x)^2} \, dx\\ &=-e^x-\frac {4 e^x}{(10-3 x)^2}+\frac {4 x^2}{(10-3 x)^2}-\frac {4}{9} e^{10/3} \text {Ei}\left (\frac {1}{3} (-10+3 x)\right )+\frac {4}{3} \int \frac {e^x}{-10+3 x} \, dx\\ &=-e^x-\frac {4 e^x}{(10-3 x)^2}+\frac {4 x^2}{(10-3 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 28, normalized size = 1.04 \begin {gather*} \frac {4 x^2+e^x \left (-104+60 x-9 x^2\right )}{(10-3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 33, normalized size = 1.22 \begin {gather*} -\frac {9 \, {\left (9 \, x^{2} - 60 \, x + 104\right )} e^{x} - 240 \, x + 400}{9 \, {\left (9 \, x^{2} - 60 \, x + 100\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 35, normalized size = 1.30 \begin {gather*} -\frac {81 \, x^{2} e^{x} - 540 \, x e^{x} - 240 \, x + 936 \, e^{x} + 400}{9 \, {\left (9 \, x^{2} - 60 \, x + 100\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.11
method | result | size |
norman | \(\frac {\frac {80 x}{3}+60 \,{\mathrm e}^{x} x -9 \,{\mathrm e}^{x} x^{2}-104 \,{\mathrm e}^{x}-\frac {400}{9}}{\left (3 x -10\right )^{2}}\) | \(30\) |
default | \(\frac {400}{9 \left (3 x -10\right )^{2}}+\frac {80}{9 \left (3 x -10\right )}-\frac {4 \,{\mathrm e}^{x}}{9 \left (x -\frac {10}{3}\right )^{2}}-{\mathrm e}^{x}\) | \(33\) |
risch | \(\frac {\frac {80 x}{27}-\frac {400}{81}}{x^{2}-\frac {20}{3} x +\frac {100}{9}}-\frac {\left (9 x^{2}-60 x +104\right ) {\mathrm e}^{x}}{\left (3 x -10\right )^{2}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {3 \, {\left (9 \, x^{3} - 90 \, x^{2} + 304 \, x\right )} e^{x}}{27 \, x^{3} - 270 \, x^{2} + 900 \, x - 1000} + \frac {80 \, {\left (3 \, x - 5\right )}}{9 \, {\left (9 \, x^{2} - 60 \, x + 100\right )}} - \frac {1064 \, e^{\frac {10}{3}} E_{3}\left (-x + \frac {10}{3}\right )}{3 \, {\left (3 \, x - 10\right )}^{2}} - \int \frac {24 \, {\left (3 \, x + 380\right )} e^{x}}{81 \, x^{4} - 1080 \, x^{3} + 5400 \, x^{2} - 12000 \, x + 10000}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.09, size = 23, normalized size = 0.85 \begin {gather*} -{\mathrm {e}}^x-\frac {4\,{\mathrm {e}}^x-\frac {80\,x}{3}+\frac {400}{9}}{{\left (3\,x-10\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 37, normalized size = 1.37 \begin {gather*} - \frac {80 \left (5 - 3 x\right )}{81 x^{2} - 540 x + 900} + \frac {\left (- 9 x^{2} + 60 x - 104\right ) e^{x}}{9 x^{2} - 60 x + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________