Optimal. Leaf size=27 \[ e^{e^{-x+\frac {-1-e-x+x^2+\log (5)}{x}}}+x \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+e^{e^{\frac {-1-e-x+\log (5)}{x}}+\frac {-1-e-x+\log (5)}{x}} (1+e-\log (5))}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {5^{\frac {1}{x}} e^{-1+5^{\frac {1}{x}} e^{-1-\frac {1}{x}-\frac {e}{x}}-\frac {1+e}{x}} (1+e-\log (5))}{x^2}\right ) \, dx\\ &=x+(1+e-\log (5)) \int \frac {5^{\frac {1}{x}} e^{-1+5^{\frac {1}{x}} e^{-1-\frac {1}{x}-\frac {e}{x}}-\frac {1+e}{x}}}{x^2} \, dx\\ &=x+(-1-e+\log (5)) \operatorname {Subst}\left (\int 5^x e^{-1+5^x e^{-1-x-e x}+(-1-e) x} \, dx,x,\frac {1}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 21, normalized size = 0.78 \begin {gather*} e^{5^{\frac {1}{x}} e^{-\frac {1+e+x}{x}}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.09, size = 66, normalized size = 2.44 \begin {gather*} {\left (x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} + e^{\left (\frac {x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} - x - e + \log \relax (5) - 1}{x}\right )}\right )} e^{\left (\frac {x + e - \log \relax (5) + 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 219, normalized size = 8.11 \begin {gather*} \frac {x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} \log \relax (5) - x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x} + 1\right )} - x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} + e^{\left (\frac {x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} - x - e + \log \relax (5) - 1}{x}\right )} \log \relax (5) - e^{\left (\frac {x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} - x - e + \log \relax (5) - 1}{x}\right )} - e^{\left (\frac {x e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} - e + \log \relax (5) - 1}{x}\right )}}{e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )} \log \relax (5) - e^{\left (-\frac {x + e - \log \relax (5) + 1}{x} + 1\right )} - e^{\left (-\frac {x + e - \log \relax (5) + 1}{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 19, normalized size = 0.70
method | result | size |
risch | \(x +{\mathrm e}^{{\mathrm e}^{-\frac {-\ln \relax (5)+{\mathrm e}+x +1}{x}}}\) | \(19\) |
norman | \(\frac {x^{2}+x \,{\mathrm e}^{{\mathrm e}^{\frac {\ln \relax (5)-{\mathrm e}-x -1}{x}}}}{x}\) | \(28\) |
default | \(x -\frac {{\mathrm e}^{-1} {\mathrm e} \,{\mathrm e}^{{\mathrm e}^{\frac {\ln \relax (5)}{x}} {\mathrm e}^{-\frac {{\mathrm e}}{x}} {\mathrm e}^{-1} {\mathrm e}^{-\frac {1}{x}}}}{\ln \relax (5)-{\mathrm e}-1}-\frac {{\mathrm e} \,{\mathrm e}^{{\mathrm e}^{\frac {\ln \relax (5)}{x}} {\mathrm e}^{-\frac {{\mathrm e}}{x}} {\mathrm e}^{-1} {\mathrm e}^{-\frac {1}{x}}}}{\ln \relax (5)-{\mathrm e}-1}+\frac {{\mathrm e}^{-1} {\mathrm e} \ln \relax (5) {\mathrm e}^{{\mathrm e}^{\frac {\ln \relax (5)}{x}} {\mathrm e}^{-\frac {{\mathrm e}}{x}} {\mathrm e}^{-1} {\mathrm e}^{-\frac {1}{x}}}}{\ln \relax (5)-{\mathrm e}-1}\) | \(138\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 106, normalized size = 3.93 \begin {gather*} x - \frac {e^{\left (e^{\left (-\frac {e}{x} + \frac {\log \relax (5)}{x} - \frac {1}{x} - 1\right )}\right )} \log \relax (5)}{e - \log \relax (5) + 1} + \frac {e^{\left (e^{\left (-\frac {e}{x} + \frac {\log \relax (5)}{x} - \frac {1}{x} - 1\right )} + 1\right )}}{e - \log \relax (5) + 1} + \frac {e^{\left (e^{\left (-\frac {e}{x} + \frac {\log \relax (5)}{x} - \frac {1}{x} - 1\right )}\right )}}{e - \log \relax (5) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.31, size = 25, normalized size = 0.93 \begin {gather*} x+{\mathrm {e}}^{5^{1/x}\,{\mathrm {e}}^{-\frac {\mathrm {e}}{x}}\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{-\frac {1}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 15, normalized size = 0.56 \begin {gather*} x + e^{e^{\frac {- x - e - 1 + \log {\relax (5 )}}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________