Optimal. Leaf size=23 \[ \log \left (-3-\frac {2}{x}+\frac {2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.92, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 6742, 6684} \begin {gather*} \log \left (-2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )+3 x+2\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+2 \log \left (x^2\right ) \left (-1+\log \left (x \log \left (x^2\right )\right ) \left (-1+\log \left (3 \log \left (x \log \left (x^2\right )\right )\right )\right )\right )}{x \log \left (x^2\right ) \log \left (x \log \left (x^2\right )\right ) \left (2+3 x-2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )\right )} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {-4-2 \log \left (x^2\right )+3 x \log \left (x^2\right ) \log \left (x \log \left (x^2\right )\right )}{x \log \left (x^2\right ) \log \left (x \log \left (x^2\right )\right ) \left (2+3 x-2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )\right )}\right ) \, dx\\ &=-\log (x)+\int \frac {-4-2 \log \left (x^2\right )+3 x \log \left (x^2\right ) \log \left (x \log \left (x^2\right )\right )}{x \log \left (x^2\right ) \log \left (x \log \left (x^2\right )\right ) \left (2+3 x-2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )\right )} \, dx\\ &=-\log (x)+\log \left (2+3 x-2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 23, normalized size = 1.00 \begin {gather*} -\log (x)+\log \left (2+3 x-2 \log \left (3 \log \left (x \log \left (x^2\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 25, normalized size = 1.09 \begin {gather*} -\frac {1}{2} \, \log \left (x^{2}\right ) + \log \left (-3 \, x + 2 \, \log \left (3 \, \log \left (x \log \left (x^{2}\right )\right )\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (\log \left (x^{2}\right ) \log \left (x \log \left (x^{2}\right )\right ) \log \left (3 \, \log \left (x \log \left (x^{2}\right )\right )\right ) - \log \left (x^{2}\right ) \log \left (x \log \left (x^{2}\right )\right ) - \log \left (x^{2}\right ) - 2\right )}}{2 \, x \log \left (x^{2}\right ) \log \left (x \log \left (x^{2}\right )\right ) \log \left (3 \, \log \left (x \log \left (x^{2}\right )\right )\right ) - {\left (3 \, x^{2} + 2 \, x\right )} \log \left (x^{2}\right ) \log \left (x \log \left (x^{2}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {-2 \ln \left (x^{2}\right ) \ln \left (x \ln \left (x^{2}\right )\right ) \ln \left (3 \ln \left (x \ln \left (x^{2}\right )\right )\right )+2 \ln \left (x^{2}\right ) \ln \left (x \ln \left (x^{2}\right )\right )+2 \ln \left (x^{2}\right )+4}{2 x \ln \left (x^{2}\right ) \ln \left (x \ln \left (x^{2}\right )\right ) \ln \left (3 \ln \left (x \ln \left (x^{2}\right )\right )\right )+\left (-3 x^{2}-2 x \right ) \ln \left (x^{2}\right ) \ln \left (x \ln \left (x^{2}\right )\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 22, normalized size = 0.96 \begin {gather*} -\log \relax (x) + \log \left (-\frac {3}{2} \, x + \log \relax (3) + \log \left (\log \relax (2) + \log \relax (x) + \log \left (\log \relax (x)\right )\right ) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.80, size = 21, normalized size = 0.91 \begin {gather*} \ln \left (\ln \relax (3)-\frac {3\,x}{2}+\ln \left (\ln \left (x\,\ln \left (x^2\right )\right )\right )-1\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 22, normalized size = 0.96 \begin {gather*} - \log {\relax (x )} + \log {\left (- \frac {3 x}{2} + \log {\left (3 \log {\left (x \log {\left (x^{2} \right )} \right )} \right )} - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________