Optimal. Leaf size=15 \[ \frac {\left (-5-4 e^{-2 x}\right ) x}{\log (15)} \]
________________________________________________________________________________________
Rubi [B] time = 0.02, antiderivative size = 35, normalized size of antiderivative = 2.33, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {12, 2176, 2194} \begin {gather*} \frac {2 e^{-2 x} (1-2 x)}{\log (15)}-\frac {2 e^{-2 x}}{\log (15)}-\frac {5 x}{\log (15)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-5+4 e^{-2 x} (-1+2 x)\right ) \, dx}{\log (15)}\\ &=-\frac {5 x}{\log (15)}+\frac {4 \int e^{-2 x} (-1+2 x) \, dx}{\log (15)}\\ &=\frac {2 e^{-2 x} (1-2 x)}{\log (15)}-\frac {5 x}{\log (15)}+\frac {4 \int e^{-2 x} \, dx}{\log (15)}\\ &=-\frac {2 e^{-2 x}}{\log (15)}+\frac {2 e^{-2 x} (1-2 x)}{\log (15)}-\frac {5 x}{\log (15)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 1.13 \begin {gather*} \frac {-5 x-4 e^{-2 x} x}{\log (15)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 21, normalized size = 1.40 \begin {gather*} -\frac {x e^{\left (-2 \, x + 2 \, \log \relax (2)\right )} + 5 \, x}{\log \left (15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 21, normalized size = 1.40 \begin {gather*} -\frac {x e^{\left (-2 \, x + 2 \, \log \relax (2)\right )} + 5 \, x}{\log \left (15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.67
method | result | size |
norman | \(-\frac {5 x}{\ln \left (15\right )}-\frac {x \,{\mathrm e}^{2 \ln \relax (2)-2 x}}{\ln \left (15\right )}\) | \(25\) |
risch | \(-\frac {4 \,{\mathrm e}^{-2 x} x}{\ln \relax (3)+\ln \relax (5)}-\frac {5 x}{\ln \relax (3)+\ln \relax (5)}\) | \(26\) |
default | \(\frac {-5 x +\frac {{\mathrm e}^{2 \ln \relax (2)-2 x} \left (2 \ln \relax (2)-2 x \right )}{2}-{\mathrm e}^{2 \ln \relax (2)-2 x} \ln \relax (2)}{\ln \left (15\right )}\) | \(42\) |
derivativedivides | \(-\frac {-10 \ln \relax (2)+10 x -{\mathrm e}^{2 \ln \relax (2)-2 x} \left (2 \ln \relax (2)-2 x \right )+2 \,{\mathrm e}^{2 \ln \relax (2)-2 x} \ln \relax (2)}{2 \ln \left (15\right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 27, normalized size = 1.80 \begin {gather*} -\frac {2 \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + 5 \, x - 2 \, e^{\left (-2 \, x\right )}}{\log \left (15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 15, normalized size = 1.00 \begin {gather*} -\frac {x\,\left (4\,{\mathrm {e}}^{-2\,x}+5\right )}{\ln \left (15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 1.27 \begin {gather*} - \frac {5 x}{\log {\left (15 \right )}} - \frac {4 x e^{- 2 x}}{\log {\left (15 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________