Optimal. Leaf size=25 \[ -5+4 \left (\frac {2}{x}+x+\log (5 x)\right )+\frac {1}{\log \left (\frac {1+x}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+\left (-8-4 x+8 x^2+4 x^3\right ) \log ^2\left (\frac {1+x}{x}\right )}{\left (x^2+x^3\right ) \log ^2\left (\frac {1+x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+\left (-8-4 x+8 x^2+4 x^3\right ) \log ^2\left (\frac {1+x}{x}\right )}{x^2 (1+x) \log ^2\left (\frac {1+x}{x}\right )} \, dx\\ &=\int \frac {x+\left (-8-4 x+8 x^2+4 x^3\right ) \log ^2\left (\frac {1+x}{x}\right )}{x^2 (1+x) \log ^2\left (1+\frac {1}{x}\right )} \, dx\\ &=\int \left (\frac {4 (-1+x) (2+x)}{x^2}+\frac {1}{x (1+x) \log ^2\left (1+\frac {1}{x}\right )}\right ) \, dx\\ &=4 \int \frac {(-1+x) (2+x)}{x^2} \, dx+\int \frac {1}{x (1+x) \log ^2\left (1+\frac {1}{x}\right )} \, dx\\ &=4 \int \left (1-\frac {2}{x^2}+\frac {1}{x}\right ) \, dx+\int \left (\frac {1}{(-1-x) \log ^2\left (1+\frac {1}{x}\right )}+\frac {1}{x \log ^2\left (1+\frac {1}{x}\right )}\right ) \, dx\\ &=\frac {8}{x}+4 x+4 \log (x)+\int \frac {1}{(-1-x) \log ^2\left (1+\frac {1}{x}\right )} \, dx+\int \frac {1}{x \log ^2\left (1+\frac {1}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.02, size = 21, normalized size = 0.84 \begin {gather*} \frac {8}{x}+4 x+\frac {1}{\log \left (1+\frac {1}{x}\right )}+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 44, normalized size = 1.76 \begin {gather*} \frac {4 \, x \log \relax (x) \log \left (\frac {x + 1}{x}\right ) + 4 \, {\left (x^{2} + 2\right )} \log \left (\frac {x + 1}{x}\right ) + x}{x \log \left (\frac {x + 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 44, normalized size = 1.76 \begin {gather*} \frac {8 \, {\left (x + 1\right )}}{x} + \frac {4}{\frac {x + 1}{x} - 1} + \frac {1}{\log \left (\frac {x + 1}{x}\right )} - 4 \, \log \left (\frac {x + 1}{x} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 1.00
method | result | size |
derivativedivides | \(\frac {1}{\ln \left (\frac {1}{x}+1\right )}+\frac {8}{x}+8-4 \ln \left (\frac {1}{x}\right )+4 x\) | \(25\) |
default | \(\frac {1}{\ln \left (\frac {1}{x}+1\right )}+\frac {8}{x}+8-4 \ln \left (\frac {1}{x}\right )+4 x\) | \(25\) |
risch | \(\frac {4 x \ln \relax (x )+4 x^{2}+8}{x}+\frac {1}{\ln \left (\frac {x +1}{x}\right )}\) | \(26\) |
norman | \(\frac {x -4 \ln \left (\frac {x +1}{x}\right )^{2} x +4 \ln \left (\frac {x +1}{x}\right ) x^{2}+8 \ln \left (\frac {x +1}{x}\right )}{\ln \left (\frac {x +1}{x}\right ) x}+4 \ln \left (x +1\right )\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 86, normalized size = 3.44 \begin {gather*} -8 \, {\left (\log \left (x + 1\right ) - \log \relax (x)\right )} \log \left (\log \left (x + 1\right ) - \log \relax (x)\right ) + 8 \, \log \left (\frac {1}{x} + 1\right ) \log \left (\log \left (x + 1\right ) - \log \relax (x)\right ) + 4 \, x - \frac {4 \, \log \left (\frac {1}{x} + 1\right )^{2}}{\log \left (x + 1\right ) - \log \relax (x)} + \frac {8}{x} + \frac {1}{\log \left (x + 1\right ) - \log \relax (x)} + 4 \, \log \left (x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.29, size = 23, normalized size = 0.92 \begin {gather*} 4\,x+4\,\ln \relax (x)+\frac {8}{x}+\frac {1}{\ln \left (\frac {x+1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.76 \begin {gather*} 4 x + 4 \log {\relax (x )} + \frac {1}{\log {\left (\frac {x + 1}{x} \right )}} + \frac {8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________