Optimal. Leaf size=32 \[ 2 (3+x) \left (-5+\frac {3+\frac {1}{3} \left (-x+\frac {x^2}{1-2 x}\right )}{e^4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 38, normalized size of antiderivative = 1.19, number of steps used = 5, number of rules used = 3, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 27, 1850} \begin {gather*} -\frac {x^2}{e^4}+\frac {\left (17-60 e^4\right ) x}{6 e^4}+\frac {7}{12 e^4 (1-2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {12-40 x+58 x^2-24 x^3+e^4 \left (-30+120 x-120 x^2\right )}{3-12 x+12 x^2} \, dx}{e^4}\\ &=\frac {\int \frac {12-40 x+58 x^2-24 x^3+e^4 \left (-30+120 x-120 x^2\right )}{3 (-1+2 x)^2} \, dx}{e^4}\\ &=\frac {\int \frac {12-40 x+58 x^2-24 x^3+e^4 \left (-30+120 x-120 x^2\right )}{(-1+2 x)^2} \, dx}{3 e^4}\\ &=\frac {\int \left (\frac {1}{2} \left (17-60 e^4\right )-6 x+\frac {7}{2 (-1+2 x)^2}\right ) \, dx}{3 e^4}\\ &=\frac {7}{12 e^4 (1-2 x)}+\frac {\left (17-60 e^4\right ) x}{6 e^4}-\frac {x^2}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 41, normalized size = 1.28 \begin {gather*} -\frac {2 \left (-7+60 e^4 (1-2 x)^2+62 x-80 x^2+24 x^3\right )}{3 e^4 (-8+16 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 39, normalized size = 1.22 \begin {gather*} -\frac {{\left (24 \, x^{3} - 80 \, x^{2} + 120 \, {\left (2 \, x^{2} - x\right )} e^{4} + 34 \, x + 7\right )} e^{\left (-4\right )}}{12 \, {\left (2 \, x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 27, normalized size = 0.84 \begin {gather*} -\frac {1}{12} \, {\left (12 \, x^{2} + 120 \, x e^{4} - 34 \, x + \frac {7}{2 \, x - 1}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 26, normalized size = 0.81
method | result | size |
risch | \(-10 x -x^{2} {\mathrm e}^{-4}+\frac {17 x \,{\mathrm e}^{-4}}{6}-\frac {7 \,{\mathrm e}^{-4}}{24 \left (x -\frac {1}{2}\right )}\) | \(26\) |
default | \(\frac {{\mathrm e}^{-4} \left (-3 x^{2}+\frac {17 x}{2}-30 x \,{\mathrm e}^{4}-\frac {7}{4 \left (2 x -1\right )}\right )}{3}\) | \(30\) |
gosper | \(-\frac {\left (60 x^{2} {\mathrm e}^{4}+6 x^{3}-20 x^{2}-15 \,{\mathrm e}^{4}+6\right ) {\mathrm e}^{-4}}{3 \left (2 x -1\right )}\) | \(37\) |
norman | \(\frac {-2 \,{\mathrm e}^{-4} x^{3}-\frac {20 \left (-1+3 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-4} x^{2}}{3}+\left (5 \,{\mathrm e}^{4}-2\right ) {\mathrm e}^{-4}}{2 x -1}\) | \(45\) |
meijerg | \(\frac {4 \,{\mathrm e}^{-4} x}{1-2 x}-\frac {\left (-120 \,{\mathrm e}^{4}+58\right ) {\mathrm e}^{-4} \left (-\frac {2 x \left (6-6 x \right )}{3 \left (1-2 x \right )}-2 \ln \left (1-2 x \right )\right )}{24}+\frac {\left (120 \,{\mathrm e}^{4}-40\right ) {\mathrm e}^{-4} \left (\frac {2 x}{1-2 x}+\ln \left (1-2 x \right )\right )}{12}-\frac {{\mathrm e}^{-4} \left (\frac {x \left (-8 x^{2}-12 x +12\right )}{-4 x +2}+3 \ln \left (1-2 x \right )\right )}{2}-\frac {10 x}{1-2 x}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 28, normalized size = 0.88 \begin {gather*} -\frac {1}{12} \, {\left (12 \, x^{2} + 2 \, x {\left (60 \, e^{4} - 17\right )} + \frac {7}{2 \, x - 1}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 40, normalized size = 1.25 \begin {gather*} \frac {7}{2\,\left (6\,{\mathrm {e}}^4-12\,x\,{\mathrm {e}}^4\right )}-x^2\,{\mathrm {e}}^{-4}-x\,\left (2\,{\mathrm {e}}^{-4}+\frac {{\mathrm {e}}^{-4}\,\left (120\,{\mathrm {e}}^4-58\right )}{12}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 31, normalized size = 0.97 \begin {gather*} - \frac {x^{2}}{e^{4}} - x \left (10 - \frac {17}{6 e^{4}}\right ) - \frac {7}{24 x e^{4} - 12 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________