Optimal. Leaf size=32 \[ \frac {3}{x^2}+\frac {1}{3} \left (1-e^{x^2} (5-x) \left (e^x-x\right ) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.09, antiderivative size = 56, normalized size of antiderivative = 1.75, number of steps used = 34, number of rules used = 9, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {12, 14, 6742, 2234, 2204, 2209, 2240, 2212, 2241} \begin {gather*} \frac {5}{3} e^{x^2} x^2+\frac {1}{3} e^{x^2+x} x^2-\frac {5}{3} e^{x^2+x} x+\frac {3}{x^2}-\frac {1}{3} e^{x^2} x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2204
Rule 2209
Rule 2212
Rule 2234
Rule 2240
Rule 2241
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-18+e^{x^2} \left (10 x^4-3 x^5+10 x^6-2 x^7+e^x \left (-5 x^3-3 x^4-9 x^5+2 x^6\right )\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \left (-\frac {18}{x^3}+e^{x^2} \left (-5 e^x+10 x-3 e^x x-3 x^2-9 e^x x^2+10 x^3+2 e^x x^3-2 x^4\right )\right ) \, dx\\ &=\frac {3}{x^2}+\frac {1}{3} \int e^{x^2} \left (-5 e^x+10 x-3 e^x x-3 x^2-9 e^x x^2+10 x^3+2 e^x x^3-2 x^4\right ) \, dx\\ &=\frac {3}{x^2}+\frac {1}{3} \int \left (-5 e^{x+x^2}+10 e^{x^2} x-3 e^{x+x^2} x-3 e^{x^2} x^2-9 e^{x+x^2} x^2+10 e^{x^2} x^3+2 e^{x+x^2} x^3-2 e^{x^2} x^4\right ) \, dx\\ &=\frac {3}{x^2}+\frac {2}{3} \int e^{x+x^2} x^3 \, dx-\frac {2}{3} \int e^{x^2} x^4 \, dx-\frac {5}{3} \int e^{x+x^2} \, dx-3 \int e^{x+x^2} x^2 \, dx+\frac {10}{3} \int e^{x^2} x \, dx+\frac {10}{3} \int e^{x^2} x^3 \, dx-\int e^{x+x^2} x \, dx-\int e^{x^2} x^2 \, dx\\ &=\frac {5 e^{x^2}}{3}-\frac {e^{x+x^2}}{2}+\frac {3}{x^2}-\frac {e^{x^2} x}{2}-\frac {3}{2} e^{x+x^2} x+\frac {5}{3} e^{x^2} x^2+\frac {1}{3} e^{x+x^2} x^2-\frac {1}{3} e^{x^2} x^3-\frac {1}{3} \int e^{x+x^2} x^2 \, dx+\frac {1}{2} \int e^{x^2} \, dx+\frac {1}{2} \int e^{x+x^2} \, dx-\frac {2}{3} \int e^{x+x^2} x \, dx+\frac {3}{2} \int e^{x+x^2} \, dx+\frac {3}{2} \int e^{x+x^2} x \, dx-\frac {10}{3} \int e^{x^2} x \, dx-\frac {5 \int e^{\frac {1}{4} (1+2 x)^2} \, dx}{3 \sqrt [4]{e}}+\int e^{x^2} x^2 \, dx\\ &=-\frac {1}{12} e^{x+x^2}+\frac {3}{x^2}-\frac {5}{3} e^{x+x^2} x+\frac {5}{3} e^{x^2} x^2+\frac {1}{3} e^{x+x^2} x^2-\frac {1}{3} e^{x^2} x^3+\frac {1}{4} \sqrt {\pi } \text {erfi}(x)-\frac {5 \sqrt {\pi } \text {erfi}\left (\frac {1}{2} (1+2 x)\right )}{6 \sqrt [4]{e}}+\frac {1}{6} \int e^{x+x^2} \, dx+\frac {1}{6} \int e^{x+x^2} x \, dx+\frac {1}{3} \int e^{x+x^2} \, dx-\frac {1}{2} \int e^{x^2} \, dx-\frac {3}{4} \int e^{x+x^2} \, dx+\frac {\int e^{\frac {1}{4} (1+2 x)^2} \, dx}{2 \sqrt [4]{e}}+\frac {3 \int e^{\frac {1}{4} (1+2 x)^2} \, dx}{2 \sqrt [4]{e}}\\ &=\frac {3}{x^2}-\frac {5}{3} e^{x+x^2} x+\frac {5}{3} e^{x^2} x^2+\frac {1}{3} e^{x+x^2} x^2-\frac {1}{3} e^{x^2} x^3+\frac {\sqrt {\pi } \text {erfi}\left (\frac {1}{2} (1+2 x)\right )}{6 \sqrt [4]{e}}-\frac {1}{12} \int e^{x+x^2} \, dx+\frac {\int e^{\frac {1}{4} (1+2 x)^2} \, dx}{6 \sqrt [4]{e}}+\frac {\int e^{\frac {1}{4} (1+2 x)^2} \, dx}{3 \sqrt [4]{e}}-\frac {3 \int e^{\frac {1}{4} (1+2 x)^2} \, dx}{4 \sqrt [4]{e}}\\ &=\frac {3}{x^2}-\frac {5}{3} e^{x+x^2} x+\frac {5}{3} e^{x^2} x^2+\frac {1}{3} e^{x+x^2} x^2-\frac {1}{3} e^{x^2} x^3+\frac {\sqrt {\pi } \text {erfi}\left (\frac {1}{2} (1+2 x)\right )}{24 \sqrt [4]{e}}-\frac {\int e^{\frac {1}{4} (1+2 x)^2} \, dx}{12 \sqrt [4]{e}}\\ &=\frac {3}{x^2}-\frac {5}{3} e^{x+x^2} x+\frac {5}{3} e^{x^2} x^2+\frac {1}{3} e^{x+x^2} x^2-\frac {1}{3} e^{x^2} x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 37, normalized size = 1.16 \begin {gather*} \frac {3}{x^2}+\frac {1}{3} e^{x^2} \left (5 x^2-x^3+e^x \left (-5 x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 34, normalized size = 1.06 \begin {gather*} -\frac {{\left (x^{5} - 5 \, x^{4} - {\left (x^{4} - 5 \, x^{3}\right )} e^{x}\right )} e^{\left (x^{2}\right )} - 9}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 46, normalized size = 1.44 \begin {gather*} -\frac {x^{5} e^{\left (x^{2}\right )} - x^{4} e^{\left (x^{2} + x\right )} - 5 \, x^{4} e^{\left (x^{2}\right )} + 5 \, x^{3} e^{\left (x^{2} + x\right )} - 9}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 35, normalized size = 1.09
method | result | size |
risch | \(\frac {3}{x^{2}}+\frac {\left (-x^{3}+{\mathrm e}^{x} x^{2}+5 x^{2}-5 \,{\mathrm e}^{x} x \right ) {\mathrm e}^{x^{2}}}{3}\) | \(35\) |
default | \(\frac {3}{x^{2}}+\frac {5 x^{2} {\mathrm e}^{x^{2}}}{3}-\frac {x^{3} {\mathrm e}^{x^{2}}}{3}-\frac {5 x \,{\mathrm e}^{x^{2}+x}}{3}+\frac {x^{2} {\mathrm e}^{x^{2}+x}}{3}\) | \(45\) |
norman | \(\frac {3+\frac {5 x^{4} {\mathrm e}^{x^{2}}}{3}-\frac {{\mathrm e}^{x^{2}} x^{5}}{3}-\frac {5 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}} x^{3}}{3}+\frac {{\mathrm e}^{x} {\mathrm e}^{x^{2}} x^{4}}{3}}{x^{2}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 294, normalized size = 9.19 \begin {gather*} \frac {5}{6} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + \frac {1}{2} i\right ) e^{\left (-\frac {1}{4}\right )} + \frac {1}{24} \, {\left (\frac {12 \, {\left (2 \, x + 1\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}{\left (-{\left (2 \, x + 1\right )}^{2}\right )^{\frac {3}{2}}} - \frac {\sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 1\right )}^{2}}} + 6 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )} - 8 \, \Gamma \left (2, -\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )\right )} e^{\left (-\frac {1}{4}\right )} + \frac {3}{8} \, {\left (\frac {4 \, {\left (2 \, x + 1\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}{\left (-{\left (2 \, x + 1\right )}^{2}\right )^{\frac {3}{2}}} - \frac {\sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 1\right )}^{2}}} + 4 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} + \frac {1}{4} \, {\left (\frac {\sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 1\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} - \frac {1}{6} \, {\left (2 \, x^{3} - 3 \, x\right )} e^{\left (x^{2}\right )} + \frac {5}{3} \, {\left (x^{2} - 1\right )} e^{\left (x^{2}\right )} - \frac {1}{2} \, x e^{\left (x^{2}\right )} + \frac {3}{x^{2}} + \frac {5}{3} \, e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 34, normalized size = 1.06 \begin {gather*} {\mathrm {e}}^{x^2}\,\left (\frac {x^2\,{\mathrm {e}}^x}{3}-\frac {5\,x\,{\mathrm {e}}^x}{3}+\frac {5\,x^2}{3}-\frac {x^3}{3}\right )+\frac {3}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 32, normalized size = 1.00 \begin {gather*} \frac {\left (- x^{3} + x^{2} e^{x} + 5 x^{2} - 5 x e^{x}\right ) e^{x^{2}}}{3} + \frac {3}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________