Optimal. Leaf size=24 \[ \frac {3 x}{\log (x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \]
________________________________________________________________________________________
Rubi [F] time = 3.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x+3 x^2-3 \log (x)+\left (-3 x^2-3 x \log (x)\right ) \log (\log (x))+\left (3 x+(-3-3 x) \log (x)+3 \log ^2(x)+(-3 x+3 x \log (x)) \log (\log (x))\right ) \log (-3 x+3 \log (x)+3 x \log (\log (x)))}{-x^3 \log ^2(x)+x^2 \log ^3(x)+x^3 \log ^2(x) \log (\log (x))+\left (-2 x^2 \log ^2(x)+2 x \log ^3(x)+2 x^2 \log ^2(x) \log (\log (x))\right ) \log (-3 x+3 \log (x)+3 x \log (\log (x)))+\left (-x \log ^2(x)+\log ^3(x)+x \log ^2(x) \log (\log (x))\right ) \log ^2(-3 x+3 \log (x)+3 x \log (\log (x)))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (\log ^2(x) \log (3 (\log (x)+x (-1+\log (\log (x)))))-x (1-x-\log (3 (\log (x)+x (-1+\log (\log (x)))))+\log (\log (x)) (x+\log (3 (\log (x)+x (-1+\log (\log (x)))))))-\log (x) (1+(1+x) \log (3 (\log (x)+x (-1+\log (\log (x)))))+\log (\log (x)) (x-x \log (3 (\log (x)+x (-1+\log (\log (x)))))))\right )}{\log ^2(x) (\log (x)+x (-1+\log (\log (x)))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx\\ &=3 \int \frac {\log ^2(x) \log (3 (\log (x)+x (-1+\log (\log (x)))))-x (1-x-\log (3 (\log (x)+x (-1+\log (\log (x)))))+\log (\log (x)) (x+\log (3 (\log (x)+x (-1+\log (\log (x)))))))-\log (x) (1+(1+x) \log (3 (\log (x)+x (-1+\log (\log (x)))))+\log (\log (x)) (x-x \log (3 (\log (x)+x (-1+\log (\log (x)))))))}{\log ^2(x) (\log (x)+x (-1+\log (\log (x)))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx\\ &=3 \int \left (\frac {-x-\log (x)+x \log (x)+x^2 \log (x)-x \log ^2(x)-x \log (x) \log (\log (x))-x^2 \log (x) \log (\log (x))}{\log ^2(x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}+\frac {-1+\log (x)}{\log ^2(x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))}\right ) \, dx\\ &=3 \int \frac {-x-\log (x)+x \log (x)+x^2 \log (x)-x \log ^2(x)-x \log (x) \log (\log (x))-x^2 \log (x) \log (\log (x))}{\log ^2(x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx+3 \int \frac {-1+\log (x)}{\log ^2(x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \, dx\\ &=3 \int \frac {-x-x \log ^2(x)+\log (x) \left (-1+x+x^2-x (1+x) \log (\log (x))\right )}{\log ^2(x) (\log (x)+x (-1+\log (\log (x)))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx+3 \int \left (-\frac {1}{\log ^2(x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))}+\frac {1}{\log (x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))}\right ) \, dx\\ &=-\left (3 \int \frac {1}{\log ^2(x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \, dx\right )+3 \int \frac {1}{\log (x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \, dx+3 \int \left (-\frac {x}{(-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}-\frac {x}{\log ^2(x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}-\frac {1}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}+\frac {x}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}+\frac {x^2}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}-\frac {x \log (\log (x))}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}-\frac {x^2 \log (\log (x))}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2}\right ) \, dx\\ &=-\left (3 \int \frac {x}{(-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx\right )-3 \int \frac {x}{\log ^2(x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx-3 \int \frac {1}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx+3 \int \frac {x}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx+3 \int \frac {x^2}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx-3 \int \frac {x \log (\log (x))}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx-3 \int \frac {x^2 \log (\log (x))}{\log (x) (-x+\log (x)+x \log (\log (x))) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))^2} \, dx-3 \int \frac {1}{\log ^2(x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \, dx+3 \int \frac {1}{\log (x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 1.00 \begin {gather*} \frac {3 x}{\log (x) (x+\log (3 (\log (x)+x (-1+\log (\log (x))))))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 28, normalized size = 1.17 \begin {gather*} \frac {3 \, x}{x \log \relax (x) + \log \left (3 \, x \log \left (\log \relax (x)\right ) - 3 \, x + 3 \, \log \relax (x)\right ) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 1.12
method | result | size |
risch | \(\frac {3 x}{\ln \relax (x ) \left (\ln \left (3 x \ln \left (\ln \relax (x )\right )+3 \ln \relax (x )-3 x \right )+x \right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 28, normalized size = 1.17 \begin {gather*} \frac {3 \, x}{{\left (x + \log \relax (3)\right )} \log \relax (x) + \log \left (x \log \left (\log \relax (x)\right ) - x + \log \relax (x)\right ) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {3\,x+3\,\ln \relax (x)+\ln \left (\ln \relax (x)\right )\,\left (3\,x\,\ln \relax (x)+3\,x^2\right )-\ln \left (3\,\ln \relax (x)-3\,x+3\,x\,\ln \left (\ln \relax (x)\right )\right )\,\left (3\,x+3\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (3\,x+3\right )-\ln \left (\ln \relax (x)\right )\,\left (3\,x-3\,x\,\ln \relax (x)\right )\right )-3\,x^2}{\ln \left (3\,\ln \relax (x)-3\,x+3\,x\,\ln \left (\ln \relax (x)\right )\right )\,\left (2\,x\,{\ln \relax (x)}^3-2\,x^2\,{\ln \relax (x)}^2+2\,x^2\,\ln \left (\ln \relax (x)\right )\,{\ln \relax (x)}^2\right )+x^2\,{\ln \relax (x)}^3-x^3\,{\ln \relax (x)}^2+{\ln \left (3\,\ln \relax (x)-3\,x+3\,x\,\ln \left (\ln \relax (x)\right )\right )}^2\,\left ({\ln \relax (x)}^3-x\,{\ln \relax (x)}^2+x\,\ln \left (\ln \relax (x)\right )\,{\ln \relax (x)}^2\right )+x^3\,\ln \left (\ln \relax (x)\right )\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.76, size = 29, normalized size = 1.21 \begin {gather*} \frac {3 x}{x \log {\relax (x )} + \log {\relax (x )} \log {\left (3 x \log {\left (\log {\relax (x )} \right )} - 3 x + 3 \log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________