Optimal. Leaf size=26 \[ 3-x+\frac {1}{3} \left (\frac {80}{e^3}+4 \left (-x+e^x x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 0.88, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {12, 14, 2176, 2194} \begin {gather*} -\frac {7 x}{3}-\frac {4 e^x}{3}+\frac {4}{3} e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-7 x+e^x x (4+4 x)}{x} \, dx\\ &=\frac {1}{3} \int \left (-7+4 e^x (1+x)\right ) \, dx\\ &=-\frac {7 x}{3}+\frac {4}{3} \int e^x (1+x) \, dx\\ &=-\frac {7 x}{3}+\frac {4}{3} e^x (1+x)-\frac {4 \int e^x \, dx}{3}\\ &=-\frac {4 e^x}{3}-\frac {7 x}{3}+\frac {4}{3} e^x (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 14, normalized size = 0.54 \begin {gather*} \frac {1}{3} \left (-7 x+4 e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 11, normalized size = 0.42 \begin {gather*} -\frac {7}{3} \, x + \frac {4}{3} \, e^{\left (x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 9, normalized size = 0.35 \begin {gather*} \frac {4}{3} \, x e^{x} - \frac {7}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 10, normalized size = 0.38
method | result | size |
default | \(-\frac {7 x}{3}+\frac {4 \,{\mathrm e}^{x} x}{3}\) | \(10\) |
risch | \(-\frac {7 x}{3}+\frac {4 \,{\mathrm e}^{x} x}{3}\) | \(10\) |
norman | \(-\frac {7 x}{3}+\frac {4 \,{\mathrm e}^{x +\ln \relax (x )}}{3}\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 15, normalized size = 0.58 \begin {gather*} \frac {4}{3} \, {\left (x - 1\right )} e^{x} - \frac {7}{3} \, x + \frac {4}{3} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.17, size = 9, normalized size = 0.35 \begin {gather*} \frac {x\,\left (4\,{\mathrm {e}}^x-7\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.46 \begin {gather*} \frac {4 x e^{x}}{3} - \frac {7 x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________