Optimal. Leaf size=20 \[ 19-6 \left (-5+x-\frac {5 x}{e^5}+x^2\right )-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {12, 14} \begin {gather*} -6 x^2+\frac {6 \left (5-e^5\right ) x}{e^5}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {30 x+e^5 \left (-1-6 x-12 x^2\right )}{x} \, dx}{e^5}\\ &=\frac {\int \left (6 \left (5-e^5\right )-\frac {e^5}{x}-12 e^5 x\right ) \, dx}{e^5}\\ &=\frac {6 \left (5-e^5\right ) x}{e^5}-6 x^2-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.95 \begin {gather*} -6 x+\frac {30 x}{e^5}-6 x^2-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 22, normalized size = 1.10 \begin {gather*} -{\left (6 \, {\left (x^{2} + x\right )} e^{5} + e^{5} \log \relax (x) - 30 \, x\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 26, normalized size = 1.30 \begin {gather*} -{\left (6 \, x^{2} e^{5} + 6 \, x e^{5} + e^{5} \log \left ({\left | x \right |}\right ) - 30 \, x\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.95
method | result | size |
risch | \(-6 x^{2}-6 x +30 x \,{\mathrm e}^{-5}-\ln \relax (x )\) | \(19\) |
norman | \(-6 x^{2}-6 \left ({\mathrm e}^{5}-5\right ) {\mathrm e}^{-5} x -\ln \relax (x )\) | \(22\) |
default | \({\mathrm e}^{-5} \left (-6 x^{2} {\mathrm e}^{5}-6 x \,{\mathrm e}^{5}+30 x -{\mathrm e}^{5} \ln \relax (x )\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 1.20 \begin {gather*} -{\left (6 \, x^{2} e^{5} + 6 \, x {\left (e^{5} - 5\right )} + e^{5} \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.11, size = 21, normalized size = 1.05 \begin {gather*} -\ln \relax (x)-6\,x^2-x\,{\mathrm {e}}^{-5}\,\left (6\,{\mathrm {e}}^5-30\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 1.35 \begin {gather*} \frac {- 6 x^{2} e^{5} - x \left (-30 + 6 e^{5}\right ) - e^{5} \log {\relax (x )}}{e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________