Optimal. Leaf size=19 \[ -33 \left (2 x-\frac {3}{\log \left (-2-x+x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6728, 6686} \begin {gather*} \frac {99}{\log \left (x^2-x-2\right )}-66 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-66-\frac {99 (-1+2 x)}{(-2+x) (1+x) \log ^2\left (-2-x+x^2\right )}\right ) \, dx\\ &=-66 x-99 \int \frac {-1+2 x}{(-2+x) (1+x) \log ^2\left (-2-x+x^2\right )} \, dx\\ &=-66 x+\frac {99}{\log \left (-2-x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 1.00 \begin {gather*} -33 \left (2 x-\frac {3}{\log \left (-2-x+x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.38, size = 27, normalized size = 1.42 \begin {gather*} -\frac {33 \, {\left (2 \, x \log \left (x^{2} - x - 2\right ) - 3\right )}}{\log \left (x^{2} - x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 17, normalized size = 0.89 \begin {gather*} -66 \, x + \frac {99}{\log \left (x^{2} - x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 18, normalized size = 0.95
method | result | size |
default | \(-66 x +\frac {99}{\ln \left (x^{2}-x -2\right )}\) | \(18\) |
risch | \(-66 x +\frac {99}{\ln \left (x^{2}-x -2\right )}\) | \(18\) |
norman | \(\frac {99-66 \ln \left (x^{2}-x -2\right ) x}{\ln \left (x^{2}-x -2\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 29, normalized size = 1.53 \begin {gather*} -\frac {33 \, {\left (2 \, x \log \left (x + 1\right ) + 2 \, x \log \left (x - 2\right ) - 3\right )}}{\log \left (x + 1\right ) + \log \left (x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.33, size = 17, normalized size = 0.89 \begin {gather*} \frac {99}{\ln \left (x^2-x-2\right )}-66\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 12, normalized size = 0.63 \begin {gather*} - 66 x + \frac {99}{\log {\left (x^{2} - x - 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________