Optimal. Leaf size=16 \[ \frac {e^4}{\frac {13}{6}-2 x+x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 18, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 1680, 261} \begin {gather*} \frac {6 e^4}{6 (1-x)^2+7} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^4 \int \frac {72-72 x}{169-312 x+300 x^2-144 x^3+36 x^4} \, dx\\ &=e^4 \operatorname {Subst}\left (\int -\frac {72 x}{\left (7+6 x^2\right )^2} \, dx,x,-1+x\right )\\ &=-\left (\left (72 e^4\right ) \operatorname {Subst}\left (\int \frac {x}{\left (7+6 x^2\right )^2} \, dx,x,-1+x\right )\right )\\ &=\frac {6 e^4}{7+6 (1-x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 1.06 \begin {gather*} \frac {6 e^4}{13-12 x+6 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 16, normalized size = 1.00 \begin {gather*} \frac {6 \, e^{4}}{6 \, x^{2} - 12 \, x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 16, normalized size = 1.00 \begin {gather*} \frac {6 \, e^{4}}{6 \, x^{2} - 12 \, x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.88
method | result | size |
risch | \(\frac {{\mathrm e}^{4}}{\frac {13}{6}+x^{2}-2 x}\) | \(14\) |
gosper | \(\frac {6 \,{\mathrm e}^{4}}{6 x^{2}-12 x +13}\) | \(19\) |
default | \(\frac {6 \,{\mathrm e}^{4}}{6 x^{2}-12 x +13}\) | \(19\) |
norman | \(\frac {6 \,{\mathrm e}^{4}}{6 x^{2}-12 x +13}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 16, normalized size = 1.00 \begin {gather*} \frac {6 \, e^{4}}{6 \, x^{2} - 12 \, x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 16, normalized size = 1.00 \begin {gather*} \frac {6\,{\mathrm {e}}^4}{6\,x^2-12\,x+13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 14, normalized size = 0.88 \begin {gather*} \frac {6 e^{4}}{6 x^{2} - 12 x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________