Optimal. Leaf size=30 \[ e^{-x} \left (-5-x \left (5 e^{\frac {4+x}{2-x}}+x\right )+\log (4)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (20-28 x+17 x^2-6 x^3+x^4+e^{\frac {-4-x}{-2+x}} \left (-20+10 x-25 x^2+5 x^3\right )+\left (-4+4 x-x^2\right ) \log (4)\right )}{4-4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (20-28 x+17 x^2-6 x^3+x^4+e^{\frac {-4-x}{-2+x}} \left (-20+10 x-25 x^2+5 x^3\right )+\left (-4+4 x-x^2\right ) \log (4)\right )}{(-2+x)^2} \, dx\\ &=\int \left (\frac {20 e^{-x}}{(-2+x)^2}-\frac {28 e^{-x} x}{(-2+x)^2}+\frac {17 e^{-x} x^2}{(-2+x)^2}-\frac {6 e^{-x} x^3}{(-2+x)^2}+\frac {e^{-x} x^4}{(-2+x)^2}+\frac {5 e^{\frac {-4-x}{-2+x}-x} \left (-4+2 x-5 x^2+x^3\right )}{(2-x)^2}-e^{-x} \log (4)\right ) \, dx\\ &=5 \int \frac {e^{\frac {-4-x}{-2+x}-x} \left (-4+2 x-5 x^2+x^3\right )}{(2-x)^2} \, dx-6 \int \frac {e^{-x} x^3}{(-2+x)^2} \, dx+17 \int \frac {e^{-x} x^2}{(-2+x)^2} \, dx+20 \int \frac {e^{-x}}{(-2+x)^2} \, dx-28 \int \frac {e^{-x} x}{(-2+x)^2} \, dx-\log (4) \int e^{-x} \, dx+\int \frac {e^{-x} x^4}{(-2+x)^2} \, dx\\ &=\frac {20 e^{-x}}{2-x}+e^{-x} \log (4)+5 \int \frac {e^{\frac {-4+x-x^2}{-2+x}} \left (-4+2 x-5 x^2+x^3\right )}{(2-x)^2} \, dx-6 \int \left (4 e^{-x}+\frac {8 e^{-x}}{(-2+x)^2}+\frac {12 e^{-x}}{-2+x}+e^{-x} x\right ) \, dx+17 \int \left (e^{-x}+\frac {4 e^{-x}}{(-2+x)^2}+\frac {4 e^{-x}}{-2+x}\right ) \, dx-20 \int \frac {e^{-x}}{-2+x} \, dx-28 \int \left (\frac {2 e^{-x}}{(-2+x)^2}+\frac {e^{-x}}{-2+x}\right ) \, dx+\int \left (12 e^{-x}+\frac {16 e^{-x}}{(-2+x)^2}+\frac {32 e^{-x}}{-2+x}+4 e^{-x} x+e^{-x} x^2\right ) \, dx\\ &=\frac {20 e^{-x}}{2-x}-\frac {20 \text {Ei}(2-x)}{e^2}+e^{-x} \log (4)+4 \int e^{-x} x \, dx+5 \int \left (-e^{\frac {-4+x-x^2}{-2+x}}-\frac {12 e^{\frac {-4+x-x^2}{-2+x}}}{(-2+x)^2}-\frac {6 e^{\frac {-4+x-x^2}{-2+x}}}{-2+x}+e^{\frac {-4+x-x^2}{-2+x}} x\right ) \, dx-6 \int e^{-x} x \, dx+12 \int e^{-x} \, dx+16 \int \frac {e^{-x}}{(-2+x)^2} \, dx+17 \int e^{-x} \, dx-24 \int e^{-x} \, dx-28 \int \frac {e^{-x}}{-2+x} \, dx+32 \int \frac {e^{-x}}{-2+x} \, dx-48 \int \frac {e^{-x}}{(-2+x)^2} \, dx-56 \int \frac {e^{-x}}{(-2+x)^2} \, dx+68 \int \frac {e^{-x}}{(-2+x)^2} \, dx+68 \int \frac {e^{-x}}{-2+x} \, dx-72 \int \frac {e^{-x}}{-2+x} \, dx+\int e^{-x} x^2 \, dx\\ &=-5 e^{-x}+2 e^{-x} x-e^{-x} x^2-\frac {20 \text {Ei}(2-x)}{e^2}+e^{-x} \log (4)+2 \int e^{-x} x \, dx+4 \int e^{-x} \, dx-5 \int e^{\frac {-4+x-x^2}{-2+x}} \, dx+5 \int e^{\frac {-4+x-x^2}{-2+x}} x \, dx-6 \int e^{-x} \, dx-16 \int \frac {e^{-x}}{-2+x} \, dx-30 \int \frac {e^{\frac {-4+x-x^2}{-2+x}}}{-2+x} \, dx+48 \int \frac {e^{-x}}{-2+x} \, dx+56 \int \frac {e^{-x}}{-2+x} \, dx-60 \int \frac {e^{\frac {-4+x-x^2}{-2+x}}}{(-2+x)^2} \, dx-68 \int \frac {e^{-x}}{-2+x} \, dx\\ &=-3 e^{-x}-e^{-x} x^2+e^{-x} \log (4)+2 \int e^{-x} \, dx-5 \int e^{\frac {-4+x-x^2}{-2+x}} \, dx+5 \int e^{\frac {-4+x-x^2}{-2+x}} x \, dx-30 \int \frac {e^{\frac {-4+x-x^2}{-2+x}}}{-2+x} \, dx-60 \int \frac {e^{\frac {-4+x-x^2}{-2+x}}}{(-2+x)^2} \, dx\\ &=-5 e^{-x}-e^{-x} x^2+e^{-x} \log (4)-5 \int e^{\frac {-4+x-x^2}{-2+x}} \, dx+5 \int e^{\frac {-4+x-x^2}{-2+x}} x \, dx-30 \int \frac {e^{\frac {-4+x-x^2}{-2+x}}}{-2+x} \, dx-60 \int \frac {e^{\frac {-4+x-x^2}{-2+x}}}{(-2+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.21, size = 40, normalized size = 1.33 \begin {gather*} e^{-1-\frac {6}{-2+x}-x} \left (-5 x+e^{\frac {4+x}{-2+x}} \left (-5-x^2+\log (4)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 34, normalized size = 1.13 \begin {gather*} -{\left (x^{2} - 2 \, \log \relax (2) + 5\right )} e^{\left (-x\right )} - 5 \, x e^{\left (-x - \frac {x + 4}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 42, normalized size = 1.40 \begin {gather*} -x^{2} e^{\left (-x\right )} - 5 \, x e^{\left (-\frac {x^{2} + x}{x - 2} + 2\right )} + 2 \, e^{\left (-x\right )} \log \relax (2) - 5 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 37, normalized size = 1.23
method | result | size |
risch | \(\left (-x^{2}+2 \ln \relax (2)-5\right ) {\mathrm e}^{-x}-5 x \,{\mathrm e}^{-\frac {x^{2}-x +4}{x -2}}\) | \(37\) |
norman | \(\frac {\left (\left (2 \ln \relax (2)-5\right ) x +2 x^{2}-x^{3}+10 x \,{\mathrm e}^{\frac {-x -4}{x -2}}-5 x^{2} {\mathrm e}^{\frac {-x -4}{x -2}}+10-4 \ln \relax (2)\right ) {\mathrm e}^{-x}}{x -2}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -8 \, {\left (2 \, \log \relax (2) - 5\right )} \int \frac {e^{\left (-x\right )}}{x^{3} - 6 \, x^{2} + 12 \, x - 8}\,{d x} + \frac {8 \, e^{\left (-2\right )} E_{2}\left (x - 2\right ) \log \relax (2)}{x - 2} - \frac {{\left (x^{4} e - 4 \, x^{3} e - x^{2} {\left (2 \, \log \relax (2) - 9\right )} e + 4 \, x {\left (2 \, \log \relax (2) - 5\right )} e + 5 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{\left (-\frac {6}{x - 2}\right )}\right )} e^{\left (-x\right )}}{x^{2} e - 4 \, x e + 4 \, e} - \frac {20 \, e^{\left (-2\right )} E_{2}\left (x - 2\right )}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 48, normalized size = 1.60 \begin {gather*} 2\,{\mathrm {e}}^{-x}\,\ln \relax (2)-5\,{\mathrm {e}}^{-x}-x^2\,{\mathrm {e}}^{-x}-5\,x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-\frac {x}{x-2}}\,{\mathrm {e}}^{-\frac {4}{x-2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.02, size = 29, normalized size = 0.97 \begin {gather*} - 5 x e^{- x} e^{\frac {- x - 4}{x - 2}} + \left (- x^{2} - 5 + 2 \log {\relax (2 )}\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________