Optimal. Leaf size=34 \[ \frac {1-\log \left (\log \left (-x+\frac {1}{4} x \left (x-x^2\right )\right )\right )}{\log \left (-4+x^2 \log (5)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 8.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-8 x^2+2 x^3-2 x^4\right ) \log (5) \log \left (\frac {1}{4} \left (-4 x+x^2-x^3\right )\right )+\left (16-8 x+12 x^2+\left (-4 x^2+2 x^3-3 x^4\right ) \log (5)\right ) \log \left (-4+x^2 \log (5)\right )+\left (8 x^2-2 x^3+2 x^4\right ) \log (5) \log \left (\frac {1}{4} \left (-4 x+x^2-x^3\right )\right ) \log \left (\log \left (\frac {1}{4} \left (-4 x+x^2-x^3\right )\right )\right )}{\left (-16 x+4 x^2-4 x^3+\left (4 x^3-x^4+x^5\right ) \log (5)\right ) \log \left (\frac {1}{4} \left (-4 x+x^2-x^3\right )\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {\left (16-8 x-4 x^2 (-3+\log (5))-3 x^4 \log (5)+x^3 \log (25)\right ) \log \left (-4+x^2 \log (5)\right )}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )}-2 x^2 \log (5) \left (-1+\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )\right )}{x \left (4-x^2 \log (5)\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\\ &=\int \left (\frac {8 x^2 \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )-2 x^3 \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )+2 x^4 \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )-16 \log \left (-4+x^2 \log (5)\right )+8 x \log \left (-4+x^2 \log (5)\right )-12 x^2 \left (1-\frac {\log (5)}{3}\right ) \log \left (-4+x^2 \log (5)\right )+3 x^4 \log (5) \log \left (-4+x^2 \log (5)\right )-x^3 \log (25) \log \left (-4+x^2 \log (5)\right )}{x \left (4-x+x^2\right ) \left (4-x^2 \log (5)\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log ^2\left (-4+x^2 \log (5)\right )}+\frac {2 x \log (5) \log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (-4+x^2 \log (5)\right ) \log ^2\left (-4+x^2 \log (5)\right )}\right ) \, dx\\ &=(2 \log (5)) \int \frac {x \log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (-4+x^2 \log (5)\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\int \frac {8 x^2 \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )-2 x^3 \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )+2 x^4 \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )-16 \log \left (-4+x^2 \log (5)\right )+8 x \log \left (-4+x^2 \log (5)\right )-12 x^2 \left (1-\frac {\log (5)}{3}\right ) \log \left (-4+x^2 \log (5)\right )+3 x^4 \log (5) \log \left (-4+x^2 \log (5)\right )-x^3 \log (25) \log \left (-4+x^2 \log (5)\right )}{x \left (4-x+x^2\right ) \left (4-x^2 \log (5)\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\\ &=(2 \log (5)) \int \left (-\frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{2 \left (2-x \sqrt {\log (5)}\right ) \sqrt {\log (5)} \log ^2\left (-4+x^2 \log (5)\right )}+\frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{2 \left (2+x \sqrt {\log (5)}\right ) \sqrt {\log (5)} \log ^2\left (-4+x^2 \log (5)\right )}\right ) \, dx+\int \frac {2 x^2 \log (5)-\frac {\left (16-8 x-4 x^2 (-3+\log (5))-3 x^4 \log (5)+x^3 \log (25)\right ) \log \left (-4+x^2 \log (5)\right )}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )}}{x \left (4-x^2 \log (5)\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\\ &=-\left (\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\right )+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\int \left (-\frac {2 x \log (5)}{\left (-4+x^2 \log (5)\right ) \log ^2\left (-4+x^2 \log (5)\right )}+\frac {-16+8 x-4 x^2 (3-\log (5))+3 x^4 \log (5)-x^3 \log (25)}{x \left (4-x+x^2\right ) \left (4-x^2 \log (5)\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}\right ) \, dx\\ &=-\left (\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\right )+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-(2 \log (5)) \int \frac {x}{\left (-4+x^2 \log (5)\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\int \frac {-16+8 x-4 x^2 (3-\log (5))+3 x^4 \log (5)-x^3 \log (25)}{x \left (4-x+x^2\right ) \left (4-x^2 \log (5)\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx\\ &=-\left (\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\right )+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-\log (5) \operatorname {Subst}\left (\int \frac {1}{(-4+x \log (5)) \log ^2(-4+x \log (5))} \, dx,x,x^2\right )+\int \frac {-4-3 x^2+\frac {x \log (25)}{\log (5)}}{x \left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx\\ &=-\left (\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx\right )+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\int \left (-\frac {1}{x \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}+\frac {\log (5)-x \log (25)}{\left (4-x+x^2\right ) \log (5) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-4+x^2 \log (5)\right )\\ &=\frac {\int \frac {\log (5)-x \log (25)}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx}{\log (5)}-\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-\int \frac {1}{x \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx-\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (-4+x^2 \log (5)\right )\right )\\ &=\frac {1}{\log \left (-4+x^2 \log (5)\right )}+\frac {\int \left (\frac {\log (5)}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}-\frac {x \log (25)}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}\right ) \, dx}{\log (5)}-\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-\int \frac {1}{x \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx\\ &=\frac {1}{\log \left (-4+x^2 \log (5)\right )}-\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-\frac {\log (25) \int \frac {x}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx}{\log (5)}-\int \frac {1}{x \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx+\int \frac {1}{\left (4-x+x^2\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx\\ &=\frac {1}{\log \left (-4+x^2 \log (5)\right )}-\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-\frac {\log (25) \int \left (\frac {1-\frac {i}{\sqrt {15}}}{\left (-1-i \sqrt {15}+2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}+\frac {1+\frac {i}{\sqrt {15}}}{\left (-1+i \sqrt {15}+2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}\right ) \, dx}{\log (5)}+\int \left (\frac {2 i}{\sqrt {15} \left (1+i \sqrt {15}-2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}+\frac {2 i}{\sqrt {15} \left (-1+i \sqrt {15}+2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )}\right ) \, dx-\int \frac {1}{x \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx\\ &=\frac {1}{\log \left (-4+x^2 \log (5)\right )}+\frac {(2 i) \int \frac {1}{\left (1+i \sqrt {15}-2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx}{\sqrt {15}}+\frac {(2 i) \int \frac {1}{\left (-1+i \sqrt {15}+2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx}{\sqrt {15}}-\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2-x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx+\sqrt {\log (5)} \int \frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\left (2+x \sqrt {\log (5)}\right ) \log ^2\left (-4+x^2 \log (5)\right )} \, dx-\frac {\left (\left (15-i \sqrt {15}\right ) \log (25)\right ) \int \frac {1}{\left (-1-i \sqrt {15}+2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx}{15 \log (5)}-\frac {\left (\left (15+i \sqrt {15}\right ) \log (25)\right ) \int \frac {1}{\left (-1+i \sqrt {15}+2 x\right ) \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx}{15 \log (5)}-\int \frac {1}{x \log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right ) \log \left (-4+x^2 \log (5)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 40, normalized size = 1.18 \begin {gather*} \frac {1}{\log \left (-4+x^2 \log (5)\right )}-\frac {\log \left (\log \left (-\frac {1}{4} x \left (4-x+x^2\right )\right )\right )}{\log \left (-4+x^2 \log (5)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 31, normalized size = 0.91 \begin {gather*} -\frac {\log \left (\log \left (-\frac {1}{4} \, x^{3} + \frac {1}{4} \, x^{2} - x\right )\right ) - 1}{\log \left (x^{2} \log \relax (5) - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 147, normalized size = 4.32
method | result | size |
risch | \(-\frac {\ln \left (-2 \ln \relax (2)+i \pi +\ln \relax (x )+\ln \left (x^{2}-x +4\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x^{2}-x +4\right )\right ) \left (-\mathrm {csgn}\left (i x \left (x^{2}-x +4\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (x^{2}-x +4\right )\right )+\mathrm {csgn}\left (i \left (x^{2}-x +4\right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (x^{2}-x +4\right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (x^{2}-x +4\right )\right )-1\right )\right )}{\ln \left (x^{2} \ln \relax (5)-4\right )}+\frac {1}{\ln \left (x^{2} \ln \relax (5)-4\right )}\) | \(147\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 32, normalized size = 0.94 \begin {gather*} -\frac {\log \left (-2 \, \log \relax (2) + \log \left (-x^{2} + x - 4\right ) + \log \relax (x)\right ) - 1}{\log \left (x^{2} \log \relax (5) - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.20, size = 31, normalized size = 0.91 \begin {gather*} -\frac {\ln \left (\ln \left (-\frac {x^3}{4}+\frac {x^2}{4}-x\right )\right )-1}{\ln \left (x^2\,\ln \relax (5)-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.24, size = 36, normalized size = 1.06 \begin {gather*} - \frac {\log {\left (\log {\left (- \frac {x^{3}}{4} + \frac {x^{2}}{4} - x \right )} \right )}}{\log {\left (x^{2} \log {\relax (5 )} - 4 \right )}} + \frac {1}{\log {\left (x^{2} \log {\relax (5 )} - 4 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________