Optimal. Leaf size=22 \[ \frac {-5+x^2+\log (x)}{3 (4+4 x \log (3 x))} \]
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+5 x+2 x^2-x^3-x \log (x)+\left (6 x+x^3-x \log (x)\right ) \log (3 x)}{12 x+24 x^2 \log (3 x)+12 x^3 \log ^2(3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+5 x+2 x^2-x^3-x \log (x)+\left (6 x+x^3-x \log (x)\right ) \log (3 x)}{12 x (1+x \log (3 x))^2} \, dx\\ &=\frac {1}{12} \int \frac {1+5 x+2 x^2-x^3-x \log (x)+\left (6 x+x^3-x \log (x)\right ) \log (3 x)}{x (1+x \log (3 x))^2} \, dx\\ &=\frac {1}{12} \int \left (-\frac {(-1+x) \left (-5+x^2+\log (x)\right )}{x (1+x \log (3 x))^2}+\frac {6+x^2-\log (x)}{x (1+x \log (3 x))}\right ) \, dx\\ &=-\left (\frac {1}{12} \int \frac {(-1+x) \left (-5+x^2+\log (x)\right )}{x (1+x \log (3 x))^2} \, dx\right )+\frac {1}{12} \int \frac {6+x^2-\log (x)}{x (1+x \log (3 x))} \, dx\\ &=-\left (\frac {1}{12} \int \left (\frac {5-x^2-\log (x)}{x (1+x \log (3 x))^2}+\frac {-5+x^2+\log (x)}{(1+x \log (3 x))^2}\right ) \, dx\right )+\frac {1}{12} \int \left (\frac {6}{x (1+x \log (3 x))}+\frac {x}{1+x \log (3 x)}-\frac {\log (x)}{x (1+x \log (3 x))}\right ) \, dx\\ &=-\left (\frac {1}{12} \int \frac {5-x^2-\log (x)}{x (1+x \log (3 x))^2} \, dx\right )-\frac {1}{12} \int \frac {-5+x^2+\log (x)}{(1+x \log (3 x))^2} \, dx+\frac {1}{12} \int \frac {x}{1+x \log (3 x)} \, dx-\frac {1}{12} \int \frac {\log (x)}{x (1+x \log (3 x))} \, dx+\frac {1}{2} \int \frac {1}{x (1+x \log (3 x))} \, dx\\ &=\frac {1}{12} \int \frac {x}{1+x \log (3 x)} \, dx-\frac {1}{12} \int \frac {\log (x)}{x (1+x \log (3 x))} \, dx-\frac {1}{12} \int \left (-\frac {5}{(1+x \log (3 x))^2}+\frac {x^2}{(1+x \log (3 x))^2}+\frac {\log (x)}{(1+x \log (3 x))^2}\right ) \, dx-\frac {1}{12} \int \left (\frac {5}{x (1+x \log (3 x))^2}-\frac {x}{(1+x \log (3 x))^2}-\frac {\log (x)}{x (1+x \log (3 x))^2}\right ) \, dx+\frac {1}{2} \int \frac {1}{x (1+x \log (3 x))} \, dx\\ &=\frac {1}{12} \int \frac {x}{(1+x \log (3 x))^2} \, dx-\frac {1}{12} \int \frac {x^2}{(1+x \log (3 x))^2} \, dx-\frac {1}{12} \int \frac {\log (x)}{(1+x \log (3 x))^2} \, dx+\frac {1}{12} \int \frac {\log (x)}{x (1+x \log (3 x))^2} \, dx+\frac {1}{12} \int \frac {x}{1+x \log (3 x)} \, dx-\frac {1}{12} \int \frac {\log (x)}{x (1+x \log (3 x))} \, dx+\frac {5}{12} \int \frac {1}{(1+x \log (3 x))^2} \, dx-\frac {5}{12} \int \frac {1}{x (1+x \log (3 x))^2} \, dx+\frac {1}{2} \int \frac {1}{x (1+x \log (3 x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 21, normalized size = 0.95 \begin {gather*} \frac {-5+x^2+\log (x)}{12 (1+x \log (3 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 21, normalized size = 0.95 \begin {gather*} \frac {x^{2} + \log \relax (x) - 5}{12 \, {\left (x \log \relax (3) + x \log \relax (x) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 37, normalized size = 1.68 \begin {gather*} \frac {x^{3} - x \log \relax (3) - 5 \, x - 1}{12 \, {\left (x^{2} \log \relax (3) + x^{2} \log \relax (x) + x\right )}} + \frac {1}{12 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 41, normalized size = 1.86
method | result | size |
risch | \(\frac {1}{12 x}+\frac {-2+2 x^{3}-2 x \ln \relax (3)-10 x}{12 x \left (2+2 x \ln \relax (3)+2 x \ln \relax (x )\right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 21, normalized size = 0.95 \begin {gather*} \frac {x^{2} + \log \relax (x) - 5}{12 \, {\left (x \log \relax (3) + x \log \relax (x) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.47, size = 19, normalized size = 0.86 \begin {gather*} \frac {\ln \relax (x)+x^2-5}{12\,\left (x\,\ln \left (3\,x\right )+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.35, size = 37, normalized size = 1.68 \begin {gather*} \frac {x^{3} - 5 x - x \log {\relax (3 )} - 1}{12 x^{2} \log {\relax (x )} + 12 x^{2} \log {\relax (3 )} + 12 x} + \frac {1}{12 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________