Optimal. Leaf size=30 \[ 4+2 \left (e^x-(3-x)^2\right )+x+\frac {1}{2} \left (5+e^x+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 18, normalized size of antiderivative = 0.60, number of steps used = 3, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 2194} \begin {gather*} -\frac {3 x^2}{2}+13 x+\frac {5 e^x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (26+5 e^x-6 x\right ) \, dx\\ &=13 x-\frac {3 x^2}{2}+\frac {5 \int e^x \, dx}{2}\\ &=\frac {5 e^x}{2}+13 x-\frac {3 x^2}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 18, normalized size = 0.60 \begin {gather*} \frac {5 e^x}{2}+13 x-\frac {3 x^2}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 13, normalized size = 0.43 \begin {gather*} -\frac {3}{2} \, x^{2} + 13 \, x + \frac {5}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 13, normalized size = 0.43 \begin {gather*} -\frac {3}{2} \, x^{2} + 13 \, x + \frac {5}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 14, normalized size = 0.47
method | result | size |
default | \(13 x -\frac {3 x^{2}}{2}+\frac {5 \,{\mathrm e}^{x}}{2}\) | \(14\) |
norman | \(13 x -\frac {3 x^{2}}{2}+\frac {5 \,{\mathrm e}^{x}}{2}\) | \(14\) |
risch | \(13 x -\frac {3 x^{2}}{2}+\frac {5 \,{\mathrm e}^{x}}{2}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 13, normalized size = 0.43 \begin {gather*} -\frac {3}{2} \, x^{2} + 13 \, x + \frac {5}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 13, normalized size = 0.43 \begin {gather*} 13\,x+\frac {5\,{\mathrm {e}}^x}{2}-\frac {3\,x^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 15, normalized size = 0.50 \begin {gather*} - \frac {3 x^{2}}{2} + 13 x + \frac {5 e^{x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________