Optimal. Leaf size=32 \[ \log \left (\frac {4 \log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )}{-\frac {2}{x}+\frac {3 x}{5}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 4.82, antiderivative size = 30, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 5, integrand size = 122, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {1593, 6725, 446, 72, 6684} \begin {gather*} -\log \left (10-3 x^2\right )+\log \left (\log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )\right )+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 446
Rule 1593
Rule 6684
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20+6 x^2+\left (20-6 x^2\right ) \log (x) \log (4 \log (x))+\left (-10-3 x^2\right ) \log (x) \log (4 \log (x)) \log \left (\frac {\log (4 \log (x))}{2 x}\right ) \log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )}{x \left (-10+3 x^2\right ) \log (x) \log (4 \log (x)) \log \left (\frac {\log (4 \log (x))}{2 x}\right ) \log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )} \, dx\\ &=\int \left (\frac {-10-3 x^2}{x \left (-10+3 x^2\right )}-\frac {2 (-1+\log (x) \log (4 \log (x)))}{x \log (x) \log (4 \log (x)) \log \left (\frac {\log (4 \log (x))}{2 x}\right ) \log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-1+\log (x) \log (4 \log (x))}{x \log (x) \log (4 \log (x)) \log \left (\frac {\log (4 \log (x))}{2 x}\right ) \log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )} \, dx\right )+\int \frac {-10-3 x^2}{x \left (-10+3 x^2\right )} \, dx\\ &=\log \left (\log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )\right )+\frac {1}{2} \operatorname {Subst}\left (\int \frac {-10-3 x}{x (-10+3 x)} \, dx,x,x^2\right )\\ &=\log \left (\log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )\right )+\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {1}{x}-\frac {6}{-10+3 x}\right ) \, dx,x,x^2\right )\\ &=\log (x)-\log \left (10-3 x^2\right )+\log \left (\log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 30, normalized size = 0.94 \begin {gather*} \log (x)-\log \left (10-3 x^2\right )+\log \left (\log \left (\log ^2\left (\frac {\log (4 \log (x))}{2 x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 0.88 \begin {gather*} -\log \left (3 \, x^{2} - 10\right ) + \log \relax (x) + \log \left (\log \left (\log \left (\frac {\log \left (4 \, \log \relax (x)\right )}{2 \, x}\right )^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.28, size = 892, normalized size = 27.88
method | result | size |
risch | \(\ln \relax (x )-\ln \left (3 x^{2}-10\right )+\ln \left (\ln \left (\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}-2 i \ln \relax (2)-2 i \ln \relax (x )+2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )-\frac {i \left (2 \pi \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )+2 i \ln \relax (2)-2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )+2 i \ln \relax (2)-2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )\right )^{2} \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )+2 i \ln \relax (2)-2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )+2 i \ln \relax (2)-2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )\right ) \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )+2 i \ln \relax (2)-2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (4 \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (4 \ln \relax (x )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )+2 i \ln \relax (2)-2 i \ln \left (\ln \left (4 \ln \relax (x )\right )\right )\right )^{2}\right )^{3}-2 \pi -4 i \ln \relax (2)\right )}{4}\right )\) | \(892\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 31, normalized size = 0.97 \begin {gather*} -\log \left (3 \, x^{2} - 10\right ) + \log \relax (x) + \log \left (\log \left (\log \relax (2) + \log \relax (x) - \log \left (2 \, \log \relax (2) + \log \left (\log \relax (x)\right )\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.25, size = 26, normalized size = 0.81 \begin {gather*} \ln \left (\ln \left ({\ln \left (\frac {\ln \left (4\,\ln \relax (x)\right )}{2\,x}\right )}^2\right )\right )-\ln \left (x^2-\frac {10}{3}\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.10, size = 27, normalized size = 0.84 \begin {gather*} \log {\relax (x )} - \log {\left (3 x^{2} - 10 \right )} + \log {\left (\log {\left (\log {\left (\frac {\log {\left (4 \log {\relax (x )} \right )}}{2 x} \right )}^{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________